
Comparison of C++ and C#

Jim Fawcett

CSE681 – Software Modeling and analysis

Fall 2011



2

Both are Important

 C++ has a huge installed base.

– C++ provides almost complete control over the allocation of 
resources and execution behavior of programs.

 C# is gaining popularity very quickly.

– C#, a managed language, is simpler than C++, takes over control 
of memory resources and manages the execution programs.

 CSE681 – Software Modeling and Analysis

– Focuses almost exclusively on C# and .Net.

 CSE687 – Object Oriented Design:

– Focuses almost exclusively on C++ and the Standard Library.



3

Comparison of Object Models

 C++ Object Model

– All objects share a rich memory 
model:

• Static, stack, and heap

– Rich object life-time model:

• Static objects live of the duration of 
the program.

• Objects on stack live within a scope 
defined by { and }.

• Objects on heap live at the 
designer’s descretion.

– Semantics based on a deep copy 
model.

• That’s the good news.

• That’s the bad news.

– For compilation, clients carry their 
server’s type information.

• That’s definitely bad news.

• But it has a work-around, e.g., 
design to interface not 
implementation.  Use object 
factories.

 .Net Object Model

– More Spartan memory model:

• Value types are stack-based only.

• Reference types (all user defined 
types and library types) live on the 
heap.

– Non-deterministic life-time model:

• All reference types are garbage 
collected.

• That’s the good news.

• That’s the bad news.

– Semantics based on a shallow 
reference model.

– For compilation, client’s use their 
server’s meta-data.

• That is great news.

• It is this property that makes .Net 
components so simple.



4

Language Comparison

 Standard C++
– Is an ANSI and ISO standard.

– Has a standard library.

– Universally available:
• Windows, UNIX, MAC

– Well known:
• Large developer base.

• Lots of books and articles.

– Programming models supported:
• Objects

• Procedural

• Generic

– Separation of Interface from 
Implementation:

• Syntactically excellent

– Implementation is separate 
from class declaration.

• Semantically poor

– See object model 
comparison.

 .Net C#
– Is an ECMA standard, becoming an 

ISO standard.

– Has defined an ECMA library.

– Mono project porting to UNIX

– New, but gaining a lot of popularity
• Developer base growing quickly.

• Lots of books and articles.

– Programming models supported:
• objects.

– Separation of Interface from 
Implementation:

• Syntactically poor

– Implementation forced in 
class declaration.

• Semantically excellent

– See object model 
comparison.



5

C# Language

 Looks a lot like Java.
– A strong analogy between:

• Java Virtual Machine & .Net CLR

• Java bytecodes & .Net Intermediate Language

• Java packages & CRL components and assemblies

• Both have Just In Time (JIT) compilers

• Both support reflection, used to obtain class information at run time

• Both languages support generics (not as useful as C++ templates)

 Differences:
– Java and C# do have significant differences

• C# has most of the operators and keywords of C++

• C# code supports attributes – tagged metadata, Java uses annotations

• C# provides deep access to the Windows platform through FCL

• Java supports network programming and GUI development on many platforms



6

using System;

namespace HelloWorld

{

class Chello

{

string Title(string s)

{

int len = s.Length;

string underline = new string('=',len+2);

string temp = "\n  " + s + "\n" + underline;

return temp;

}

string SayHello()

{

return "Hello World!";

}

[STAThread]

static void Main(string[] args)

{

Chello ch = new Chello();

Console.Write(ch.Title("HelloWorld Demonstration"));

Console.Write("\n\n  {0}\n\n",ch.SayHello());

}

}

}

First C# Program



7

Differences Between C# and C++

 In C# there are no global functions.  Everything is a class.
– Main(string args[]) is a static member function of a class.

 The C# class libraries are like Java Packages, not like the C and 
C++ Standard Libraries.
– System, System.Drawing, System.Runtime.Remoting, System.Text, 

System.Web
– C# class hierarchy is rooted in a single “Object” class

 C# does not separate class declaration and member function 
definitions.
– Every function definition is inline in the class declaration – like the 

Java structure.
– There are no header files.
– Instead of #include, C# uses using statements:

• using System; 
• using System.ComponentModel;



8

Differences between C++ and C#

 The C# object model is very different from the C++ object 
model.

– Illustrated on the next slide

 C# supports only single inheritence of implementation, but 
multiple inheritance of interfaces

 C# does not support use of pointers, only references, except in 
“unsafe” code.

 Use of a C# variable before initialization is a compile-time error.



9

C# Object Model

value type

on stack

Reference Type

handle on Stack

Body on Heap

bool, byte, char,

decimal, double,

float, int, long, sbyte,

short, struct, uint,

ulong, ushort

object, string,

user defined type

Example:

  int x = 3;

Example:

  myClass mc = new myClass(args);

  string myStr = "this is some text";



10

More Differences 

 The CLR defines a new delegate type, used for callbacks.

 event is a keyword in all CLR languages.

 All memory allocations are subject to garbage collection – you don’t call 
delete.

 There are no #includes in C#.  There are in both managed and 
unmanaged C++.

 In C# all class data members are primitive types or C# references.  In 
managed C++ all class data members are either primitive value types, 
C++ references, or C++ pointers.  Nothing else is allowed.

 The CLR provides threads, directory services, and remoting.  The 
Standard C++ Library provides none of these, although the first two 
are easy to provide yourself.



11

Common Type System

 Value Types

– Primitive types

• See page 13

– Structures

• methods

• fields

• properties

• Events

• Member adornments:
public, protected, private, abstract, static

– Enumerations



12

Common Type System

 Reference Types

– Classes

• methods

• fields

• properties

• Events

• Member adornments:
public, protected, private, abstract, static

– Interfaces

• Class can inherit more than one

• Must implement each base interface

– Delegates

• Instances used for notifications



13

C# Primitive Types

.Net Base Class

– System.Byte

– System.SByte

– System.Int16

– System.Int32

– System.Int64

– System.UInt16

– System.UInt32

– System.UInt64

– System.Single

– System.Double

– System.Object

– System.Char

– System.String

– System.Decimal

– System.Boolean

C# Types

– byte

– sbyte

– short

– int

– long

– ushort

– uint

– ulong

– float

– double

– object

– char

– string

– decimal

– bool



14

C# Object Type

 Object is the root class of the C# library

 Object’s members:

– public Object();

– public virtual Boolean Equals(Object obj);

• Returns true if obj and invoker handles point to the same body.

– public virtual Int32 GetHashCode();

• Return value identifies object instance.

– public Type GetType();

• Type object supports RTTI – see next page

– public virtual String ToString();

• Returns namespace.name

– protected virtual void Finalize();

• Called to free allocated resources before object is garbage collected.

– protected Object MemberwiseClone();

• Performs shallow copy

• To have your class instances perform deep copies you need to implement the 
ICloneable interface. 



15

Type Class

You get type object this way:

 Type t = myObj.GetType();

 Type t = Type.GetType(“myObj”);

Some of Type’s members:
– IsAbstract

– IsArray

– IsClass

– IsComObject

– IsEnum

– IsInterface

– IsPrimitive

– IsSealed

– IsValueType

– InvokeMember()

– GetType() returns Type Object

– FindMembers()       returns MemberInfo array

– GetEvents() returns EventInfo array

– GetFields() :

– GetMethods() :

– GetInterfaces() :

– GetMembers() :

– GetProperties() :



Class Browser in IDE

16



17

Useful Interfaces

 IComparable - method

– Int CompareTo(object obj);

• Return:

– Negative => less

– Zero => equal

– Positive => greater

 ICloneable - method

– object clone();

 ICollection – properties and method

– int count { get; }

– bool IsSynchronized { get; }

– object SyncRoot { get; }

– void CopyTo(Array array, int index);



18

Useful Interfaces

 IEnumerable - method

– System.Collections.IEnumerator GetEnumerator();

 IEnumerator – property and methods

– object Current { get; }

– bool MoveNext();

– void Reset();



19

Useful Interfaces

 IDictionary
– bool IsFixedSize { get; }

– bool IsReadOnly { get; }

– object this[ object key ] { get; 
set; }

– ICollection keys { get; }

– ICollection values { get; }

– void Add(object key, object 
value);

– void Clear();

– bool Contains(object key);

– System.Collections.IDictionaryE
numerator GetEnumerator();

– void Remove(object key);

 IList
– bool IsFixedSize { get; }

– bool IsReadOnly { get; }

– object this[ object key ] { get; 
set; }

– void Add(object key, object 
value);

– void Clear();

– bool Contains(object key);

– int IndexOf(object value);

– void Insert(int index, object 
value);

– void Remove(object value);

– void RemoveAt(int index);



20

Delegates

 Delegates are used for callbacks:

– In response to some event they invoke one or more functions supplied to 
them.

– Library code that generates an event will define a delegate for application 
developers to use – the developer defines application specific processing 
that needs to occur in response to an event generated by the library code.

– A delegate defines one specific function signature to use:

public delegate rtnType delFun(args…);

This declares a new type, delFun that invokes functions with that signature.

– The developer supplies functions this way:

libClass.delFun myDel = new libClass.delFun(myFun);

This declares a new instance, myDel, of the delFun type.  



21

Events
 Events are specialized delegates that are declared and invoked by a class that wants to publish 

notifications.

The event handlers are functions created by an event subscriber and given to the delegate.

 A C# event uses the specialized delegate event handler of the form:

public delegate void evDelegate(
object sender, userEventArgs eArgs

);

userEventArgs is a subscriber defined class, derived from System.EventArgs.  You usually 
provide it with a constructor to allow you to specify information for the event to use.

 The event is then declared by the publisher as:

public event evDelegate evt;

Either publisher or subscriber has to create a delegate object, eveDel, and pass it to the other 
participant.

 The event is invoked by the publisher this way:

evDel(
this, new userEventArgs(arg)

);

 The subscriber adds an event handler function, myOnEvent, to the event delegate this way:

Publisher.evDelegate evDel += 
new Publisher.evDelegate(myOnEvent);



22

Threads

 A C# thread is created with the statement:

Thread thrd = new Thread();

 System.Threading declares a delegate, named ThreadStart, used to 
define the thread’s processing.
– ThreadStart accepts functions that take no arguments and have void return 

type.

 You define a processing class that uses constructor arguments or 
member functions to supply whatever parameters the thread 
processing needs.

 To start the thread you simply do this:

Thread thrd = new Thread();

ThreadStart thrdProc = new ThreadStart(myProc);

thrd.Start(thrdProc);



23

Thread Synchronization

 The simplest way to provide mutually exclusive access to an object 
shared between threads is to use lock:

lock(someObject) {

// do some processing on

// someObject

}

While a thread is processing the code inside the lock statement no 
other thread is allowed to access someObject.



24

Components

 Because C# classes are reference types, they expose no 
physical implementation detail to a client.  What the client 
creates on its stack frames are simply handles to the class 
implementations.

– The compiler does type checking for a client from metadata in an 
accessed assembly.

– No header file is included, so the client is not dependent on 
implementation details of the class.

– Consequently, any C# library dll can serve as a component for local 
access.

– To make a component remotely accessible, you need to derive 
from System.MarshalByRefObject



25

C# Object Model

value type

on stack

Reference Type

handle on Stack

Body on Heap

bool, byte, char,

decimal, double,

float, int, long, sbyte,

short, struct, uint,

ulong, ushort

object, string,

user defined type

Example:

  int x = 3;

Example:

  myClass mc = new myClass(args);

  string myStr = "this is some text";



26

Assemblies

 An assembly is a versioned, self-describing binary (dll or exe)

 An assembly is the unit of deployment in .Net

 An assembly is one or more files that contain:
– A Manifest

• Documents each file in the assembly

• Establishes the assembly version

• Documents external assemblies referenced

– Type metadata
• Describes all the methods, properties, fields, and events in each 

module in the assembly

– MSIL code
• Platform independent intermediate code

• JIT transforms IL into platform specific code

– Optional resources
• Bitmaps, string resources, …



27

Assembly Structure

 Visual Studio does most of the work in configuring an assembly 
for you.

Multiple File Assembly
myLibrary

Single File Assembly
myProject.exe

Manifest

Type

Metadata

MSIL code

optional

resources

Manifest

Type

Metadata

MSIL code

optional

resources

Type

Metadata

MSIL code

Type

Metadata

MSIL code

lib2.dll

lib3.dll

lib1.dll

lib.bmp



28

Metadata in demoFiles.exe



29

Versioning

 Assemblies can be public or private:

– A private assembly is used only by one executable, and no version 
information is checked at loadtime.

• Private assemblies are contained in the project directory or, if there is a config 
file, in a subdirectory of the project directory.

– A shared assembly is used by more than one executable, and is loaded only 
if the version number is compatible with the using executable.

• Shared assemblies reside in the Global Assembly Cache (GAC), a specific 
directory.

• Version compatibility rules can be configured by the user.

– Since no registry entries are made for the assembly, each user executable 
can attach to its own version of the assembly.  This is called side-by-side 
execution by Microsoft.

– A shared assembly is created from a private assembly, using one of 
Microsoft’s utilities provided for that purpose.



30

C# Libraries

 System

– Array, Attribute, Console, Convert, Delegate, Enum, Environment, 
EventArgs, EventHandler, Exception, Math, MTAThreadAttribute, Object, 
Random, STAThreadAttribute, String, Type 

 System.Collections

– ArrayList, HashTable, Queue, SortedList, Stack

 System.Collections.Specialized

– ListDictionary, StringCollection, StringDictionary

 System.ComponentModel

– Used to create components and controls

– Used by WinForms

 System.ComponentModel.Design.Serialization

– Used to make state of an object persistant

 System.Data

– Encapsulates use of ADO.NET



31

More C# Libraries

 System.Drawing – GDI+ support

– System.Drawing.Drawing2D – special effects

– System.Drawing.Imaging – support for .jpg, .gif files

– System.Drawing.Printing – settings like margins, resolution

 System.Net – support for HTTP, DNS, basic sockets

– System.Net.sockets – sockets details

 System.Reflection

– view application’s metadata including RTTI

 System.Runtime.InteropServices

– Access COM objects and Win32 API



32

Remoting Libraries

 System.Runtime.Remoting
– System.Runtime.Remoting.Activation

• Activate remote objects

– System.Runtime.Remoting.Channels
• Sets up channel sinks and sources for remote objects

– System.Runtime.Remoting.Channels.HTTP
• Uses SOAP protocol to communicate with remote objects

– System.Runtime.Remoting.Channels.TCP
• Uses binary transmission over sockets

– System.Runtime.Remoting.Contexts
• Set threading and security contexts for remoting

– System.Runtime.Remoting.Messaging
• Classes to handle message passing through message sinks

– System.Runtime.Remoting.Meta data
• Customize HTTP SoapAction type output and XML Namespace URL

– System.Runtime.Remoting.Proxies

– System.Runtime.Remoting.Services



33

You must be joking – More Libraries!

 System.Runtime.Serialization

– System.Runtime.Serialization.Formatters

• System.Runtime.Serialization.Formatters.Soap

 System.Security

 System.ServiceProcess

– Create windows services that run as Daemons

 System.Text.RegularExpressions

 System.Threading

– AutoResetEvent, Monitor, Mutex, ReaderWriterLock, Thread, Timeout, Timer, 
WaitHandle

– Delegates: ThreadStart, TimerCallBack, WaitCallBack

 System.Timers

– Fire events at timed intervals, day, week, or month



34

Web Libraries

 System.Web

– System.Web.Hosting

• Communicate with IIS and ISAPI run-time

– System.Web.Mail

– System.Web.Security

• cookies, web authentication, Passport

– System.Web.Services – close ties to ASP.NET

• System.Web.Services.Description

• System.Web.Services.Discovery

• System.Web.Services.Protocol – raw HTTP and SOAP requests

• System.Web.SessionState – maintain state between page requests

– System.Web.UI – access to WebForms



35

WinForms and XML Libraries

 System.Windows.Forms – Forms based GUI design

 System.Xml – XML DOM

– System.Xml.Schema

• Authenticate XML structure

– System.Xml.Serialization

• Serialize to XML

– System.Xml.XPath

• Navigate XSL

– System.Xml.Xsl

• Support for XSL – XML stylesheets



36

So How do we Learn all this stuff!

ClassView -> Class Browser -> Help

to the rescue!



37

Access Class Browser from class View



38

Select Type to see its Members



39

Browsing System.DLL



40

Getting Help on a Selected Type or Member – Just hit F1



41

Takes you Immediately to Help Documentation for that Identifier



42

End of Presentation


