EXTENSION
OBJEC]

Adarsh
Mrunal
Prof. Fawcett



INTRODUCTION

e Extension object is a behavioural design pattern
e INTENT

o Anticipate that an object’s interface needs to be extended in the future. Additional interfaces are
defined by extension objects.



MOTIVATION

e For some abstractions it is difficult to anticipate their complete
interface since different clients can require a different view on

the abstraction
e Avoid having bloated interface.



MOTIVATION EXAMPLE

Component

GetExtension()

TextComponent

GetExtension()

ComponentExtension

TextAccessor

FirstWord()
NextWord()
ChangeWord()

StandardTextAccessor

FirstWord()
NextWord()
ChangeWord()

SpellChecker




APPLICABILITY

e Addition of new or unforeseen interfaces to existing classes
without impacting all clients

e Classrepresenting a key abstraction plays different roles for
different clients.

e (lass should be extensible with new behavior without
subclassing from it



BASIC STRUCTURE

S

ubject
GetExtension()
AbstractExtension

VAN
ConcreteSubject
ConcreteExtension
GetExtension()




PARTICIPANTS

e Subject (Component)
o Defines the identity of an abstraction
e Extension (ComponentExtension)
o |t defines some support for managing extensions
themselves
e ConcreteSubject (StandardTextComponent)
o Implement the GetExtension operation to returna
corresponding extension object when the client asks for it
e AbstractExtension (TextAccessor)
o Declares the interface for a specific extension
e ConcreteExtension (StandardTextAccessor)
o Implement the extension interface for a particular
component



COLLABORATORS

e Aclient asks a Subject for a specific extension

e When the extension exists the Subject returns a corresponding
extension object

e If the Subject doesn't support an extension it returns nil to signal
that it doesn't support it.



IMPLEMENTATION

A Subject class would be declared like this in C++:

class Subject {
public:

virtual Extension* GetExtension(const char* name);

Subject::GetExtension is implemented as:

Extension* Subject::GetExtension(const char®* name)
)
]

return 0;

Here is a ConcreteSubject that provides a SpecificExtension:

class ConcreteSubject: public Subject {
public:

virtual Extension* GetExtension(const char®* name);
private:
SpecificExtension* specificExtension;




The implementation of ConcreteSubject::GetExtension is defined like:

Extension* ConcreteSubject::GetExtension(const char* name)
]
1

if (stremp(name, "SpecificExtension" == 0) |
if (specificExtension == ()
specificExtension = new SpecificExtension(this);

return specificExtension;
|
return Subject::GetExtension(name);

Finally, to access an extension the client writes:

SpecificExtension* extension;
Subject* subject;

extension = dynamic cast<SpecificExtension™*>(
subject->GetExtension("SpecificExtension™)
);
if (extension) {
// use the extension interface




CONSEQUENCES

e Extension Objects facilitates adding interfaces

e No bloated class interfaces for key abstractions.

e Support for modeling different roles of a key abstraction in
different subsystems

e Clients become more complex

e Tension to abuse extensions for concepts that should be
explicitly modeled



LIABILITIES

Internal vs. External extensions
Identifying extensions.
Demand loading of extensions
Freeing Extension Objects



KNOWN USES

e OpenDoc
e OLE
e Ul framework of Taligent operating system



\ RELATED PATTERNS

e Visitor
e Adapter
e Decorator



REFERENCES

e https://ecs.syr.edu/faculty/fawcett/handouts/CSE776/PatternPDFs/ExtensionObject.pd
f



THANK YOU



