
Iterator Design Pattern

Jim Fawcett
CSE776 – Design Patterns
Fall 2014



Intent

• Provide a way to access elements of an aggregate object 
without exposing its underlying representation

• Traverse many different data structures in a uniform way

• Place “bookmarks” in a large collection of data



Motivation

• Abstract the traversal of different data structures so that 
algorithms can interface with each transparently



Motivation

• Instance of List class is 
traversed with a ListIterator

• ListIterator provides an 
interface for accessing List’s 
elements

• An iterator is responsible for 
keeping track of the current 
element



Forces

• Separating traversal mechanism from the aggregate object 
lets us define iterators for different traversal policies 
without enumerating them in List interface

• Forward iteration, reverse iteration, preorder, postorder, …

• The iterator and aggregate are coupled

• Iterator needs to know aggregate structure

• Aggregate may need to give iterator special permissions, e.g., 
friend status in C++



Polymorphic Iteration

• We want the code using iteration to be independent of the 
type of aggregate being used.

• C++ Standard Template Library (STL) uses, by convention, a 
standard interface for iteration based on pointer syntax:
• ++iter, *iter, iter->fun(arg)

• .Net provides IEnumerator interface
• Current property

• MoveNext, Reset methods



Motivation Structure

• CreateIterator() is a factory 
method

• We use it to let client ask for an 
iterator appropriate for the 
aggregate being used

• .Net uses the 
IEnumerable.GetEnumerator()

• C++ uses Container::Iterator



Applicability

• Use the Iterator Pattern to:

• Access an aggregate object’s contents without exposing its internal 
representation

• Support multiple traversals of aggregate’s objects

• Provide a uniform interface for traversing different aggregate 
structures



Structure



Participants

• Iterator
• Defines interface for accessing and traversing elements

• ConcreteIterator
• Implements the Iterator interface

• Keeps track of current position in traversal

• Aggregate
• Defines interface for creating an Iterator object

• ConcreteAggregate
• Implements the Iterator creation interface to return an instance of its 

associated ConcreteIterator



Collaborations

• ConcreteIterator keeps track of the current object in the 
aggregate

• Makes current element accessible to client

• Computes the succeeding object in traversal



Consequences

• Supports variations in the traversal of an aggregate

• Simplifies the Aggregate interface

• More than one traversal can be pending on an aggregate



Implementation

• Who controls iteration?

• Client – successive steps

• Aggregate – DFS on Tree

• Who defines the traversal 
algorithm?

• Preorder, postorder

• How robust is the iterator?

• Additional Iterator 
operations

• Using polymorphic iterators 
in C++

• Iterators may need 
priviledged access

• Iterators for composites

• Null iterators



Sample Code

• Iterator Skeleton

• STL Iterator Examples

• .Net Iterator Examples



Known Uses

• C++

• STL <vector>, <list>, <string>, <iostreams>, …

• Arrays using native pointers

• .Net

• System.Collections, System.Collections.Generic

• Java

• ListIterator<E>, XMLEventReader


