Iterator Design Pattern

Jim Fawcett
CSE776 — Design Patterns
Fall 2014

Intent

* Provide a way to access elements of an aggregate object
without exposing its underlying representation

* Traverse many different data structures in a uniform way

* Place “"bookmarks” in a large collection of data

Motivation

* Abstract the traversal of different data structures so that
algorithms can interface with each transparently

Motivation

* Instance of List class is
traversed with a Listlterator

* Listlterator provides an
interface for accessing List’s
elements

* An iterator is responsible for
keeping track of the current
element

Counti)
Append(Element)
RemoveElement)

| Listiterator

First])
Mext()
lsDonel)

Currentitern()

Forces

» Separating traversal mechanism from the aggregate object
lets us define iterators for different traversal policies
without enumerating them in List interface

* Forward iteration, reverse iteration, preorder, postorder, ...

* The iterator and aggregate are coupled
* Iterator needs to know aggregate structure

* Aggregate may need to give iterator special permissions, e.qg.,
friend status in C++

Polymorphic lteration

* We want the code using iteration to be independent of the
type of aggregate being used.

* C++ Standard Template Library (STL) uses, by convention, a
standard interface for iteration based on pointer syntax:

* ++iter, *iter, iter->fun(arg)

* .Net provides IEnumerator interface

* Current property
* MoveNext, Reset methods

Motivation Structure

* Createlterator() is a factory
m et h O d AbstractlList lterator

* We use it to let client ask for an
iterator appropriate for the
aggregate being used

. . Net USES the Listiterator
IEnumerable.GetEnumerator() SipListirato

* C++ uses Container::lterator

Applicability

e Use the Iterator Pattern to:

* Access an aggregate object’s contents without exposing its internal
representation

 Support multiple traversals of aggregate’s objects

* Provide a uniform interface for traversing different aggregate
structures

Structure

Createlterator])

ConcreteAggregate
Concretelterator

Createlterator) ©

ratum new Concratalteratonthis)

Participants

* Iterator
* Defines interface for accessing and traversing elements

* Concretelterator
* Implements the Iterator interface
* Keeps track of current position in traversal

* Aggregate
* Defines interface for creating an Iterator object

» ConcreteAggregate

* Implements the Iterator creation interface to return an instance of its
associated Concretelterator

Collaborations

* Concretelterator keeps track of the current object in the
aggregate

* Makes current element accessible to client

* Computes the succeeding object in traversal

Consequences

» Supports variations in the traversal of an aggregate
* Simplifies the Aggregate interface

* More than one traversal can be pending on an aggregate

Implementation

* Who controls iteration? * Using polymorphic iterators

* Client — successive steps in Ct+

- Aggregate — DFS on Tree * |terators may need

-
* Who defines the traversal pivilieng)eel aEeese

algorithm? * Iterators for composites

* Preorder, postorder Null iterators

* How robust is the iterator?

* Additional Iterator
operations

Sample Code

* |terator Skeleton
* STL Iterator Examples

* .Net Iterator Examples

Known Uses

° C++
* STL <vector>, <list>, <string>, <iostreams>, ...

* Arrays using native pointers

* Net

» System.Collections, System.Collections.Generic

* Java
* Listlterator<E>, XMLEventReader

