
Abstract Factory Pattern
Jim Fawcett

CSE776 – Design Patterns

Fall 2017

Intent

• “Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.”

• provide a simple creational interface for a complex family of classes

• Client does not have to know any of those details.

• avoid naming concrete classes

• Clients use abstract creational interfaces and abstract product interfaces.
Concrete classes can be changed without affecting clients.

• Clients can stay blissfully unaware of implementation details

• This is critically important!

Why is this so
important?

Operations:

 CreateProdA()

 CreateProcB()

AbstractFactory

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory1

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory2

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProductB1 ConcreteProductB2

client

Abstract Factory Structure

Motivating Examples

•Target multiple platforms by creating component
instances for selected platform.

•Design neural network layers to contain the
technology for their own construction, allowing
networks to focus on learning strategies.

Forces

• The deep copy object model, used by the C++ language,
binds a class to all the concrete classes it uses.
• The class’s header file holds information about supporting

classes to allow them to be created and used.

• If one of the serving classes changes, the using class must also
change, and every class that uses this class must also change.

• To prevent this “top-to-bottom” binding, a class must
bind to interface abstractions instead. It must also use
factories as proxies to create the instances it uses.

• In a large system we will be likely to use interfaces and
factories between subsystems. A factory will then need
to manage creation of many of the objects within a
subsystem.

Dependencies – Mozilla, version 1.4.1

Strong component of
dependency graph, e.g., set
of mutually dependent files

Forces

• Languages like C# and Java have less need for factories
due to their shallow reference object model.
• The physical layout of code for a given class does not depend

on the sizes of the objects it uses, unlike C++.

• The new operator extracts information about how to build an
instance from its class’s metadata, not from the classes that
use it, unlike C++.

•However, even for these languages the Abstract Factory
Pattern is still useful!
• Interfaces support the exchange of implementing types, even

at run-time, which is often very useful.

• Factories support binding of specific objects to these
interfaces, without requiring clients to have knowledge of the
specific types.

Logical System Layering

Policy Layer

Implementation Layer

Utility Layer

uses

uses

header
included

header
included

Dependency Inversion Principle

Policy Layer

Implementation Layer

Utility Layer

Implementation

Interface

Utility

Interface

client
abstract interface

(a class with at least one
pure virtual function)

concrete
implementation

Client has a pointer statically
typed as pointer to interface,
but that pointer will refer to a
concrete implementation
object

Fact:
 This client will be compile-time independent of the
 concrete implementation if, and only if, it does not
 directly create an instance of the concrete class

The purpose of an abstract
interface is to provide a protocol for
clients to use to request service
from concrete objects without
coupling to their implementations

Abstract Interface

Layering with Abstract Interfaces

Policy Layer

Implementation Layer

Utility Layer

Implementation

Interface

Utility

Interface

implementation

factory

Utility factory

Applicability

•Use the Abstract Factory Pattern if:

• clients need to be ignorant of how servers are created,
composed, and represented.

• clients need to operate with one of several families of products

• a family of products must be used together, not mixed with
products of other families.

• you provide a library and want to show just the interface, not
implementation of the library components.

• Giving customers your product header files may disclose some of your
proprietary value.

Operations:

 CreateProdA()

 CreateProcB()

AbstractFactory

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory1

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory2

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProductB1 ConcreteProductB2

client

Abstract Factory Structure

Participants

•AbstractFactory
• provide an interface for building product objects

• ConcreteFactory
• implements the creation functionality for a specific product

family

•AbstractProduct
• provides an interface for using product objects

• ConcreteProduct
• created by a ConcreteFactory, implements the AbstractProduct

interface for a specific product family

• Client
• uses only abstract interfaces so is independent of the

implemen-tation.

Why is there a parallel hierarchy
of factories and products?

Collaborators

•Usually only one ConcreteFactory instance is used for an
activation, matched to a specific application context. It
builds a specific product family for client use -- the
client doesn’t care which family is used -- it simply
needs the services appropriate for the current context.

• The client may use the AbstractFactory interface to
initiate creation, or some other agent may use the
AbstractFactory on the client’s behalf.

• The factory returns, to its clients, specific product
instances bound to the product interface. This is what
clients use for all access to the instances.

Presentation Remark

•Here, we often use a sequence diagram (event-
trace) to show the dynamic interactions between
participants.

•For the Abstract Factory Pattern, the dynamic
interaction is simple, and a sequence diagram
would not add much new information.

Consequences

• The Abstract Factory Pattern has the following benefits:

• It isolates concrete classes from the client.

• You use the Abstract Factory to control the classes of objects the client creates.

• Product names are isolated in the implementation of the ConcreteFactory, clients
use the instances through their abstract interfaces.

• Exchanging product families is easy.

• None of the client code breaks because the abstract interfaces don’t change.

• Because the abstract factory creates a complete family of products, the whole
product family changes when the concrete factory is changed.

• It promotes consistency among products.

• It is the concrete factory’s job to make sure that the right products are used
together.

Consequences

•More benefits of the Abstract Factory Pattern

• It supports the imposition of constraints on product
families, e.g., always use A1 and B1 together, otherwise
use A2 and B2 together.

Consequences

•The Abstract Factory pattern has the following
liability:

• Adding new kinds of products to existing factory is
difficult.
• Adding a new product requires extending the abstract interface which

implies that all of its derived concrete classes also must change.

• Essentially everything must change to support and use the new product
family

• abstract factory interface is extended

• derived concrete factories must implement the extensions

• a new abstract product class is added

• a new product implementation is added

• client has to be extended to use the new product

Operations:

 CreateProdA()

 CreateProcB()

AbstractFactory

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory1

Operations:

 CreateProdA()

 CreateProcB()

ConcreteFactory2

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProductB1 ConcreteProductB2

client

Abstract Factory Structure

To add a new
product, all the
factory interfaces
must change.

Implementation

•Concrete factories are often implemented as
singletons.

•Creating the products
• Concrete factory usually use the factory method.

• simple

• new concrete factory is required for each product family

• alternately concrete factory can be implemented using
prototype.
• only one is needed for all families of products

• product classes now have special requirements - they participate in the
creation

Implementation

•Defining extensible factories by using create
function with an argument

• only one virtual create function is needed for the
AbstractFactory interface

• all products created by a factory must have the same base
class or be able to be safely coerced to a given type

• it is difficult to implement subclass specific operations

Know Uses

• Interviews

• used to generate “look and feel” for specific user interface objects

• uses the Kit suffix to denote AbstractFactory classes, e.g., WidgetKit and DialogKit.

• also includes a layoutKit that generates different composite objects depending on the
needs of the current context

• ET++

• another windowing library that uses the AbstractFactory to achieve portability across
different window systems (X Windows and SunView).

• COM – Microsoft’s Component Object Model technology

• Each COM component provides a concrete factory bound to the IClassFactory interface
and provides clients specific instances bound to the server’s product interface.

absFact/InterViews1.htm
absFact/ETplusplus1.htm

Related Patterns

•Factory Method -- a “virtual” constructor

•Prototype -- asks products to clone themselves

•Singleton -- allows creation of only a single instance

Code Examples

•Skeleton Example

• Abstract Factory Structure

• Skeleton Code

•Neural Net Example

• Neural Net Physical Structure

• Neural Net Logical Structure

• Simulated Neural Net Example

SKELETON
NNAbsFact/NNet Structure.vsd
NNAbsFact/NNET.vsd
NNAbsFact

End of Presentation

