CSE791 – Distributed Objects

Spring 2002

Midterm A

Name:___________________________________
SSN:________________________

This is a closed book examination. Please place all your books on the floor beside you. You may keep one page of notes on your desktop in addition to this exam package. All examinations will be collected at 6:50. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to discuss your question. I will answer all questions about the meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to answer first those questions you believe to be easiest.

1. What is meant by reference counting and how does it apply to COM?

An object that is reference counted holds a count of the number of users currently holding a reference to the object. In order to do this it provides functions like addref() and release() to allow a client to modify the reference count when ever acquiring or releasing references to the object.

COM makes reference counting a standard part of both in-proc and out-of-proc components. It does this by specifying the functions AddRef() and Release() that are part of the IUnknown interface.

Any COM function provided by Microsoft or by a developer is required to call AddRef() whenever returning a pointer to an interface, as is the case for the COM function CoCreateInstance(…). The client is required to call Release() when finished with the interface returned by this call.
2. How do you create a single threaded apartment? What do you accomplish by doing that?

You call CoInitialize() or CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

Apartments allow clients to correctly use components without considering their threading models.

A Single Threaded Apartment (STA) allows only one thread to enter, the thread that created the STA. An STA thread can instantiate any number of objects, and if they are in-proc, and are threading compatible with the client, they join the STA of that thread
. If a component has a threading model = none it is assigned to the client’s primary STA. If a component is not threading compatible with its client a new STA is created for it.

Calls between apartments are marshaled, and only the single STA thread is allowed to service calls to an object in an STA. Consequently, all calls to an object in an STA are serialized.

3. Write the IDL required to define a COM component with an interface that has a single function that marshals back to the client an array of short integers. The length of the array is to be determined by the component at run-time. Be as complete as you can be.

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(8439962D-AC08-4A2F-A93F-361CE4A2B764),

dual,

helpstring("IIArray Interface"),

pointer_default(unique)

]

interface IIArray : IDispatch

{

[id(1), helpstring("method getArray")]
HRESULT getArray(
 [out] INT *pSize,
 [out, size_is(1,*pSize)] SHORT **ppShort
);

};

[

uuid(BA7F7589-53A4-4906-8172-1158C8EF7324),

version(1.0),

helpstring("A3 1.0 Type Library")

]

library A3Lib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[

uuid(6E65D06B-885D-4043-B542-B15B643D02CE),

helpstring("IArray Class")

]

coclass IArray

{

[default] interface IIArray;

};

};
4. You are designing a program that will use an in-proc COM component. The component you want to use has a function with an [in,out] double* parameter. What are your responsibilities for memory management for this function call.

Since there is no size_is attribute, we know that we are passing in, and returning a single double. Since we pass a single pointer, the server may change the value pointed to, but it is impossible for the server to affect the client’s memory allocation, e.g., reallocation is not possible. Therefore, the client’s only responsibility is to ensure that the pointer points to valid memory, holding a properly initialized value. The client may, in fact, allocate memory on the stack, on C++’s dynamic heap, or on the COM global heap using CoTaskMemAlloc(sizeof(double));

Note that top level pointers, like the double* above, are [ref] by default, and must be [ref] for [out] and [in, out] parameters. This simply means that we must declare a location for the pointer to point to:

double someDoubleValue = 3.1415927;

pInterface->myFunction(&someDoubleValue);
// correct

double *pDouble;

pInterface->myFunction(pDouble);

// incorrect

Second and lower level pointers like the short* part of short** in the previous problem should be [unique] or [ptr] so that the component can (re)allocate memory as needed. These attributes are the defaults used by COM.
5. What is COM’s interface policy?

· All interfaces must inherit from IUnknown.
· The set of interfaces accessible from QueryInterface for a specified component must be fixed.

· An interface, once published, is immutable.

· Given any interface pointer to some specific component, you must be able to get a pointer to IUnknown, unique for that component.
· Suppose that IA, IB, and IC are COM interfaces. Then, using QueryInterface:
i. If, using IA, we can successfully get a pointer to IB, we can always get a pointer to IA from IB (symmetry property).
ii. If, using IA, we successfully get a pointer to IB, and then, using IB, we get a pointer to IC, then we must be able to get a pointer to IC by using IA (transitive property).
iii. If we request a pointer to IA by using IA the request must succeed (reflexive property).

6. What is the IUnknown interface used for? Be as complete and explicit as you can.

IUnknown has 3 methods, QueryInterface, AddRef, and Release.

· Given any pointer to a component, QueryInterface is used to request a pointer to another interface. If the component does not support that interface, the pointer returned is NULL.
· AddRef is used to increase the reference count held by the component. It is called whenever a pointer is aliased. This usually happens when an interface pointer is returned from some function.

· Release is called by the client when done with the component.

7. Describe the steps to activate an in-proc COM component.

Steps taken by client:

· Call CoInitialize to establish an apartment

· Call CoCreateInstance to create an instance of the component

· Client accepts pointer passed back by COM run-time

Steps taken by COM:

· COM takes CLSID passed by client through CoCreateInstance and searches for component registry entry, finds path to component and calls load library

· Calls DLLMain

· Calls GetProcAddress() to find DllGetClassObject()

· Calls DllGetClassObject() to create instance of class factory

· Uses pointer returned by DllGetClassObject to call component’s createInstance(), asking for the interface pointer requested by the client.

· Returns interface pointer to client.

Steps taken by component:

· DllGetClassObject() creates class factory and returns pointer to it to COM.

· createInstance() creates an instance of the component and returns a pointer to COM.

8. Describe the essential features of a COM component and describe their importance.

A COM component must have:
· a class factory to create an instance of the object. Since COM and the object server collaborate to create an instance of the object, the client only needs interface information, no implementation details and hence is compilation independent of the component.

· One or more interfaces, derived from IUnknown or IDispatch, for clients to use to access the component functionality in an implementation independent way.

· One or more classes to implement the interface functionality.

· A reference count so COM can figure out when it is safe to unload the component.

· If it is an in-proc component it must provide the function DllGetClassObject() so COM can access the class factory. If the component is an out-of-proc component it’s main thread must create the class factory and pass its IUnknown pointer to COM via CoRegisterClassObject().
· It must provide support for registering its CLSID and IIDs in the Windows registry.

· It must describe its interfaces via IDL so COM can create proxy and stub code via the MIDL compiler.

· The component, its interfaces, and type library must be identified with GUIDs in its IDL definition. This ensures that any component and its interfaces can be uniquely identified by COM and by clients.
9. Describe the steps you go through to build a COM component using ATL. This is what you did in Project #2.

· You create an empty server using the ATL Application Wizard.
· You insert a simple object into the server, using the ATL Class Wizard.
 - right click on classes in class view, select new ATL object

· You add methods to the empty interface provided by the Class Wizard.
 - right click on component’s interface, select add method
 - add name and IDL form of arguments in dialog

· You populate the methods with code to implement its functionality.

· If the functionality of a method is at all complex, you should build standard C++ modules to implement the required processing and add those files to your project.

· You compile the IDL, build the component dll or exe and, if a dll, you register it using the VC6 IDE tools menu.
· You build a client to test the component’s operations.
 - add a new project to the component’s workspace
 - add a new file from Project Settings or copy a client from another
 project
 - include component’s h file and _i.c file in the client project to
 acquire the interface declarations and GUID definitions
10. You are the software architect of a large software project. Why might you choose to use COM extensively in the project’s implementation?

COM objects bind to their clients at run-time through the COM activation process and the client needs no implementation detail to achieve that binding. Thus a COM component can be updated with out rebuilding the clients that depend on it.

This loose coupling is very important for large systems. Without this kind of loose coupling software changes due to changing requirements, latent errors, or performance enhancements can cause a chain reaction of many consequential changes making it very difficult and expensive to add new features or fix errors.

Creating an architecture based on component technology can result in a loosely coupled, flexible, easy to change system, this making it much easier to meet schedule and cost budgets.
11. You are using a COM component in a script block on a web page. Name three standard interfaces you are certain to be using in this application.

Every COM object must use IUnknown as the base for any other interface. In order to allow COM to activate it, the component must support the IClassFactory interface. Finally, the component must support the IDispatch interface in order for script code to use its capabilities.
Midterm B

Name:___________________________________
SSN:________________________

This is a closed book examination. Please place all your books on the floor beside you. You may keep one page of notes on your desktop in addition to this exam package. All examinations will be collected at 6:50. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to discuss your question. I will answer all questions about the meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to answer first those questions you believe to be easiest.

1. What do you have to do to be able to access a COM component on a remote machine?

· file and print sharing must be turned on

· distributed COM must be enabled

· RPCSS (RPC service) must be running
· The component and its proxy/stub dll must reside on the remote machine

· The component and proxy/stub must be registered in the remote machine.

· If the client is not configured for remote operation you must add RemoteServerName=”ipaddress” and RunAs=”Interactive User” to the local registry and remove InProcServer32 and LocalServer32 if they exist in the local registry.

· Otherwise, you must configure the client as follows:

i. Client uses CoCreateInstanceEx with the parameters:

· a pointer to a COSERVERINFO structure

· the size of an array of MULTI_QI structures

· an array of MULTI_QI structures

ii. each MULTI_QI structure requests a specific interface pointer.

iii. The COSERVERINFO structure identifies the machine to search for the component, either by ipaddress or DNS name.
2. You have a lot of customers in remote locations that have installed a product you designed. Why might you have chosen to use COM for this product?

If you used a COM component, changes to meet new requirements or fix latent errors can be effected simply by copying an updated dll into the directory where the original component resided. You can do this without rebuilding the client or any other component it uses.

Thus deployment of fixes and updates can, with a little initial planning, be effected by transmitting the dll file via an internet connection if it is available. Even if an internet connection is not available, you can mail the component dll with simple instructions to your client and have the client install the new component.

3. Describe the steps you go through to build a COM component with C++, but without using the ATL or MFC libraries. This is what you did in Project #1.

· You create an IDL file that defines the interfaces your component will support.
· You create a server implementation file that provides a class factory

· You add to the server a class or classes to implement the interfaces you described in the IDL.

· If the component is in-proc, you add DLL functions:

i. DllGetClassObject to create an instance of the class factory

ii. DLLCanUnloadNow to tell COM when the component library can be unloaded

iii. DllRegisterServer and DllUnregisterServer to provide functions needed to register your component with regsvr32.exe.

iv. DllMain to provide an entry point for COM where you can do server initializations if you need to.

· If the component is out-of-proc, managing the component’s lifetime is rather messy and you will almost certainly use ATL to build it.
· Add registry code or reuse an existing registry module.

· You compile the IDL to create interface declarations, define the GUIDS, and generate proxy/stub code.

· You build the server and register it with regsvr32 if it is a dll or run it with the /RegServer switch setting to register it.

· You build a client to test its functionality.

4. Write the IDL to describe a COM component with a single interface in which a single function is declared. The function accepts from the user an array of doubles, of size declared at run time, with values that the component will use. The component may change some of the values and the client will need to know what the new values are. Please be as complete as you can be.

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(ECF06F3C-344E-4444-AD5B-B4056281EE29),

dual,

helpstring("IArray Interface"),

pointer_default(unique)

]

interface IArray : IDispatch

{

 [id(1), helpstring("method setArray")]
 HRESULT setArray(
 [in, out] int *pSize,
 [in, out, size_is(1, *pSize)] double **ppArray
);
 [id(2), helpstring("method altSetArray")]

 HRESULT altSetArray(

 [in] int size,

 [in, out, size_is(size)] double array[]

);

 };

[

uuid(A15475EC-A7F5-44F9-946C-1A1F9DCF28B1),

version(1.0),

helpstring("B4 1.0 Type Library")

]

library B4Lib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[

uuid(90312EC2-41BC-471F-AFD7-0E0E4FB240A1),

helpstring("Array Class")

]

coclass Array

{

[default] interface IArray;

};

};
5. Describe the steps to activate an out-of-proc COM component.

Steps taken by client:

· Call CoInitialize to establish an apartment

· Call CoCreateInstance to create an instance of the component

· Client accepts pointer passed back by COM run-time

Steps taken by COM:

· COM takes CLSID passed by client through CoCreateInstance and searches for component registry entry, and calls CreateProcess(…).

· Waits for server to register class factory.

· Gets class factory pointer from server’s call to CoRegisterClassObject(…)

· Uses pointer returned by server’s call of CoRegisterClassObject(…) to call component’s createInstance(), asking for the interface pointer requested by the client.

· Returns interface pointer to client.

Steps taken by component:

· Call CoInitialize(Ex)(…) to establish an apartment for its main thread.
· Create an instance of the class factory and get its IUnknown pointer.

· Call CoRegisterClassObject() to pass the class factory IUnknown pointer to COM.

· CreateInstance() creates an instance of the component and returns a pointer to COM.

6. What does a class factory do?

A component’s class factory is responsible for creating an instance of the component class that implements the component’s interface(s). To do this it must:
· provide an IClassFactory or IClassFactory2 interface which declare the functions CreateInstance(…) and LockServer().

· In the function CreateInstance(…) it must create an instance of the class that implements all interface functionality.

· It must call QueryInterface(…) on the component for the requested interface pointer and return it to the caller (COM).
· It calls Release() on the pointer before it exits.

7. What is COM aggregation trying to accomplish? You don’t need to go through all the functionality provided by a pair of components that have an aggregation relation, just describe its purpose as clearly and completely as you can.

COM aggregation allows one component to expose one or more interfaces of another, aggregated component, to a client and make it appear that the exposed interfaces belong to the aggregating component. That is, all the COM rules for interfaces must be satisfied:

· A request for an IUnknown pointer on either aggregator or aggregated interfaces must deliver the same pointer value.

· A request for an aggregator interface from an aggregated interface through its QueryInterface function must succeed.

· A request for an aggregated interface from an aggregator interface through its QueryInterface function must succeed.

COM’s proxy manager, used for inter-apartment communication, uses COM aggregation. Each interface provided by the target component has a proxy interface that the proxy manager aggregates so that, from the client’s view, the proxy manager appears to be the target component.

8. A COM component has an interface function with an [in] parameter of type BSTR. Please explain all of the memory allocations and deallocations required during a call to this function.

If the component resides in a separate apartment:
· The client uses SysAllocString to allocate memory for the BSTR character array and length counter.

· The stub uses SysAllocString to create a BSTR copy in the receiving apartment.

· When the function returns the stub frees the BSTR memory allocation with SysFreeString.

· The client uses SysFreeString to deallocate the original BSTR memory when no longer needed.

If the client and component reside in the same apartment then the 2nd and 3rd steps, above, are not needed, as the component simply uses the client’s BSTR object.

9. What is the Component Object Model?

A broad definition is a software server that provides an abstract interface and creational function so that clients have no compilation dependency on the server. An implied requirement is that the component be built as either a dll library or standalone exe so that the client need not be statically linked to the server, allowing a simple copy of the server code to be provided to the client after modification of the server.

COM adds to that a binary standard for interface definitions and a standard for managing communication between separate processes and components with separate threading models. COM also adds definitions for a number of standard interfaces, like IUnknown, IClassFactory, and IDispatch to make all this work. Finally, COM provides registration with Globally Unique Identifiers to achieve location transparency for client.
10. how do you create a multi-threaded apartment?

Call CoInitializeEx(NULL, COINIT_MULTITHREADED). Each process can have only one MTA. Any number of threads can join the MTA simply by making the call, shown above, to CoCreateInstanceEX.
11. What role does reference counting play in COM. Where do you find it?

Reference counting is a fundamental part of COM’s management of component lifetimes. Since the client is not allowed to directly create an instance of a COM object, COM must take on that responsibility. It therefore also must take on the responsibility of managing the object’s lifetime.

COM does this by reference counting. Every function that returns an interface pointer is responsible for calling AddRef(), and every client is responsible for calling Release() when done with the interface. In this way the component holds an accurate count of the current number of users. When this count goes to zero COM can dispose of the object.

The AddRef() and Release() functions are part of the IUnknown interface which every interface must derive from. Each component must store a reference count which the implementations of AddRef() and Release() increment and decrement, respectively.
� Both threads and components belong to apartments.

