
LINUX PROCESSES & THREADS

Jim Fawcett
CSE775 – Distributed Objects
Spring 2012

References

 Advanced Programming in the Unix
Environment, Stevens & Rago, Addison Wesley,
Second Edition, 2005

 The Linux Programming Interface, Kerrisk, no
starch press, 2010

 Programming with POSIX Threads, Butenhof,
Addison Wesley, 1997

Linux Processes

 A Linux process is a kernel entity to which
system resources are allocated to execute a
program.

 A Process consists of:
 User-space memory containing a program’s code and

variables and kernel data structures that hold
information about the process

 This includes ids associated with the process, virtual
memory tables, table of open file descriptors, signal
handling information, process resource state and
limits, current working directory, …

Process Structure

 Text segment (sharable, read only)
 Machine language program instructions

 Initialized data segment
 Global and local static data that are initialized, read when

the program is loaded

 Uninitialized data segment (not stored on disk)
 Uninitialized global and static data, filled with zeros when

loaded

 Stack
 Dynamically allocated stack frames for each program

scope.

 Heap
 Area for dynamic memory allocations made by program.

Creating a Child Process

 There are two primary ways to create a child
process:

 Call fork() which creates a clone of the parent
process. Usually there is distinct code for parent
and for child. See the Fork example.

 Call one of the exec() functions. These fork() but
then purge the process of the parent code and
data and load another program for execution. See
Execl example.

Linux Threads

 A Linux thread has:

 A process unique thread id

 A set of register values

 A stack

 A scheduling priority and policy

 A signal mask

 An errno value

 Thread specific data

Linux Threads

 Headers

 #include <pthread.h>

 Create Thread

 Int pthread_Create(
pthread_t* restrict pTid,
const pthread_attr_t* restrict pAttr,
void* (*pRunfunc)(void*),
void* restrict pArg

);

 Returns 0 if OK, error number on failure

Thread Creation

 Thread starts running function pointed to by
pRunfunc with single argument *pArg
 This, of course, could be a struct of arguments

 pTid points to thread id supplied by create

 pAttr points to thread attributes structure
 Null implies default attributes

 Terminates when *pRunfunc completes.

 No guarantees whether creator or thread run
first.

Thread Creation

 Linux creates a “thread” by cloning the
parent thread’s process. That clone shares
part of the parent’s execution context like
memory and file descriptors.

 Each thread has its own stack.

 Two threads can share global data and
anything passed to both in arg structures.

Thread Termination

 There are three ways a thread can terminate
without ending its parent process:

 Return from *pRunfunc. Return value is thread’s
exit code.

 Thread can be canceled by another thread in same
process:

 Int pthread_cancel(pthread_t tid);

 Call pthread_exit(void* returnValue)

Wait for Thread to Complete

 One thread, usually the parent, can wait for
termination of a thread by calling:

 int pthread_join(pthread_t tid, void** returnVal);

The return value is 0 on success, otherwise a failure
code.

That’s All Folks

