
C# COM
Interoperability
Late Binding

Vijay Appadurai

with small revisions by Jim Fawcett

CSE775 – Distributed Objects

Spring 2005

Types of Binding

 There are two kinds of Binding from C# to COM –
Early Binding and Late Binding.

 Early Binding can be done by creating a runtime
callable wrapper, which the C# client can use for
invoking COM objects. That’s what happens when
you make a reference in a C# client to a COM
server.

 Late Binding can be done even without the creation
of a runtime callable wrapper. We will see how.

Late Binding

 Late Binding is done with the help of the C#
Reflection APIs.

 The Type class and the Activator class of
the C# Reflection API is used for this
purpose.

 The C# client only needs to know the
server’s Program ID for runtime invocation.
The following code shows how to
accomplish that.

Using C# Reflection for
Late Binding
//Get IDispatch Interface from the COM Server. Here the Server’s Program ID is

“Component.InsideDCOM”

Type objType =
Type.GetTypeFromProgID(“Component.InsideDCOM”);

//Create an instance of the COM object from the type obtained

object objSum = Activator.CreateInstance(objType);

object c;
object[] myArgument = {100,200};

//Invoke a Method on the COM Server which implements IDispatch Interface and get
the result

c = objType.InvokeMember("Sum",
BindingFlags.InvokeMethod, null, objSum, myArgument);

//Print the result

Console.WriteLine(“Sum of 100 and 200 is “ + c);

Making COM Server Support
Late Binding

 To support Late Binding, the COM Server should
implement the IDispatch Interface.

 This can be done in two ways:

 THE PURE AUTOMATION INTERFACE

Use the dispinterface statement shown here when
you are designing a pure automation interface:

[uuid(10000001 – 0000 – 0000 – 0000 - 000000000001)]

dispinterface ISum

{

properties:

methods:

[id(1)] int Sum(int x, int y);

};

Dual Interfaces

 Using the dispinterface is not recommended
since doing so restricts a client to using only
the IDispatch interface.

 Making dual interfaces is preferred.

 Here’s the IDL syntax required to indicate
support for both IDispatch and custom
interface.

[object, uuid(10000001 – 0000 – 0000 – 0000 -000000000001),

dual]

interface ISum : IDispatch

{

[id(1)] HRESULT Sum (int x, int y, [out, retval] int* retval);

}

Modifying Outproc3a and 3b
to Support Dual Interface

 Implement all four functions of IDispatch:

// IDispatch

HRESULT __stdcall GetTypeInfoCount(UINT* pCountTypeInfo);

HRESULT __stdcall GetTypeInfo(UINT iTypeInfo, LCID lcid, ITypeInfo**
ppITypeInfo);

HRESULT __stdcall GetIDsOfNames(REFIID riid, LPOLESTR*
rgszNames, UINT cNames, LCID lcid, DISPID* rgDispId);

HRESULT __stdcall Invoke(DISPID dispIdMember, REFIID riid, LCID
lcid, WORD wFlags, DISPPARAMS* pDispParams, VARIANT*
pVarResult, EXCEPINFO* pExcepInfo, UINT* puArgErr);

Modifying Ouproc3a and 3b

 Modify QueryInterface so that it returns IDispatch*
when queried for IID_IDispatch

 Get Type Information about the ISum interface in
the CFactory::CreateInstance function.

HRESULT
CFactory::CreateInstance(IUnknown *pUnknownOuter, REFIID riid, void

**ppv)

{

…
ITypeLib* pTypeLib;

LoadRegTypeLib(LIBID_Component, 1, 0, LANG_NEUTRAL, &pTypeLib)

HRESULT hr = pTypeLib->GetTypeInfoOfGuid(IID_ISum, m_pTypeInfo);

pTypeLib->Release();
…
}

Using ATL to support Dual
Interfaces

 Its simple. Just choose the Interface as Dual as
shown.

References:
Inside Distributed COM,
Guy Eddon and Henry Eddon,
Microsoft Press, 1998

