Interface Definition Language

Jim Fawcett
CSE 775 - Distributed Objects
copyright © 2001-2005

Error Codes

* Error codes are returned as HRESULTS by all COM interface
functions, with the exception of AddRef() and Release().

* Visual studio smart pointer class _com_ptr simulates return by value and throws

exceptions on errors by wrapping the proxy’s interface functions in wrapper classes
that take care of those details.

* Test HRESULTS using the macros:
» #define SUCCEEDED(hr) (long(hr) >=0)
 #define FAILED(hr) (long(hr) < 0)

* Specific Error Codes:

« S OK : successful normal operation

* S _FALSE : return logical false as a success code
* E_FAIL : generic failure

* E. OUTOFMEMORY : memory allocation failed

* E_NOTIMPL : method not implemented

E_UNEXPECTED : method call at incorrect time

Data Types

* Marshaling depends on exact knowledge of the sizes of data types.

* Cand C++ do not define the sizes of their types. Each compiler and platform may
define the sizes as they wish.

* COM bases its types on the NDR (Network Data Representation) types which
have specified sizes.

* COM types suitable for marshaling are defined in wtypes.idl. These declarations
include a lot of Windows specific data types as well as types useful for general
COM programming.

* We can use all these types if we import wtypes.idl in our IDL file.

Decorations

* In order to marshal efficiently COM needs to know the direction of data flow, e.g.:
[in], [out], [in, out], [out, retval]

and will marshal data only in the direction(s) specified.

* For languages that have run-time support like Java and Visual Basic, an out
parameter may be decorated with retval, indicating that those environments
make the call look like a function return value:

IDL : HRESULT Method([in] short arg, [out, retval] short *ret)
Visual Basic: Function Method(arg as Integer) As Integer

Since C++, has no such support, its interface looks like this:

C++: virtual HRESULT __ stdcall Method(short arg, short *ret)

Memory Allocation

* Memory for [in] parameters is always allocated and freed by caller.
Can use any kind of allocation, e.g., stack, heap, static.

 Memory for [out] parameters is always allocated by the method and
always freed by the caller.
* Method : CoTaskMemAlloc(ULONG size);
* Client: CoTaskMemFree(LPVOID pv);

 Memory for [in,out] is allocated by caller, may be reallocated by
method using:
* CoTaskMemRealloc(LPVOID pv, ULONG size)

* Must be freed by caller.

Pointer Decorations

* In order to marshal efficiently COM needs to know how pointers will
be used:

* [ref] : pointers are initialized with valid (non-null) addresses at method
invocation. This value can not change during method execution. All [out]
pointers must be [ref]

* [unique] : pointers may be null, can not be aliased.

* [ptr] : same as unique except it can be aliased — requires much more work of
marshaler, as it requires duplicate detection.

* Example:

HRESULT method([in,out,ref] int *pint);

Strings

 All characters in COM are represented using the OLECHAR data type:
* typedef wchar_t OLECHAR

* IDL uses the string decoration to tell the marshaler that a null
terminated wide char string is being sent:
 HRESULT method([in,string] const OLECHAR *pQOC);

* You can initialize an OLECHAR string this way:
e Const OLECHAR *pOC = OLESTR(”thIS is a String”);

* The C Run-Time Library provides two conversion functions:
* size_t mbstowcs(wchar_t *pOC, const char *pC, size_t count);
 Size_t wcstombs(char *pC, const wchar_t *pOC, size_t count);

Support for OLECHAR Strings

* The C Run-Time Library provides wide char string support that
parallels its ANSI char string support, e.g.:

e wcslen :return number of characters in string
(not equal to number of bytes)

* WCSCpPy : copy a wide source string to a wide destination string.
You have to allocate enough memory for destination.

wcscspn : find a substring in a wide char string
wcschr: : find first occurrence of a char in a wide char string.
wcsrchr : find the last occurrence of a char in wide char string.

* The C++ Standard library iostreams and strings module also provide
support with:
* wcout, wcin
* wstring

BSTRS

* The BSTR type is a derived type used in Visual Basic and Microsoft Java
(and presumably C#). BSTRs are recognized by the standard
marshalers and used frequently by COM developers.

* BSTRs are length-prefixed, null terminated strings of OLECHARs.

BSTR

<+——Length in Bytes—»<4——Character Data—»<4—NULL—»

BSTR Memory Allocation

* COM expects BSTRs to use a COM memory allocator, and provides several API
functions for handling BSTRs, declared in oleauto.h:

// allocate and initialize
* BSTR SysAllocString(const OLECHAR *pOC);
* BSTR SysAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// reallocate and initialize
* INT SysReAllocString(BSTR *pBSTR, const OLECHAR *pOC);
* INT SysReAllocStringlLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// free a BSTR
* void SysFreeString(BSTR bstr);

// peek at length count as OLECHAR count or byte count
e UINT SysStringlLen(BSTR bstr);
* UINT SysStringByteLen(BSTR bstr)

BSTR Memory Management

* When passing BSTRs as [in] parameters, the caller invokes
SysAllocString prior to calling the method and SysFreeString after the
method has completed.

* When passing strings from a method as an [out] parameter, it is the
responsibility of the method to call SysAllocString before passing back
the string. The caller releases the memory by calling SysFreeString.

* When passing BSTRs as [in, out] parameters, you treat them like [in]
parameters.

* Reference: If you are going to use BSTRs in your project code, make
sure you look carefully at “Strings the OLE Way”, Bruce McKinney, in
MSDN online or in help.

 CComBSTR class provides a lot of help handling BSTRs. Check it out in
MSDN.

Arrays

* Fixed arrays have sized determined at compile-time:
HRESULT method([in] double arr[8]);

* Conformal arrays have size determined at run-time:
HRESULT method([in] long dim, [in,size_is(dim)] double *da);

* Varying array sends only part of array:
HRESULT method([in,out] long *first, [in,out] long *last,
[in,out,first_is(first),length_is(last-first+1),size_is(100)] long *la);

* Open array sends part of array — size is determined at run-time. Same as
above, except argument of size_is() is a variable.

Other Data Types

* We will encounter the Variant and Safe Array data types when we discuss
Automation and the IDispatch interface.

» A variant is a discriminated (tagged) union that will hold any of a large
subset of the IDL data types. There are a set of system functions designed
to help manipulate variants. These are declared in oleauto.h

» Reference: “The Ultimate Data Type”, Bruce McKinney, MSDN

» A Safe Array is a structure that holds, possibly multi-dimensioned, arrays
with descriptors of their sizes. There are a set of system functions
designed to help manipulate safe arrays. These are declared in oleauto.h

* Reference: “The Safe OLE Way of Handling Arrays”, Bruce McKinney,
MSDN

References for IDL

* MSDN/Platform SDK/Component Services/Microsoft Interface
Definition Language

* Essential IDL, Martin Gudgin, Addison Wesley, 2001
 Essential COM, Don Box, Addison Wesley, 1998

* COM IDL & Interface Design, Al Major, WROX, 1999

