
Interface Definition Language

Jim Fawcett

CSE 775 - Distributed Objects

copyright © 2001-2005

Error Codes

• Error codes are returned as HRESULTS by all COM interface
functions, with the exception of AddRef() and Release().
• Visual studio smart pointer class _com_ptr simulates return by value and throws

exceptions on errors by wrapping the proxy’s interface functions in wrapper classes
that take care of those details.

• Test HRESULTS using the macros:
• #define SUCCEEDED(hr) (long(hr) >= 0)

• #define FAILED(hr) (long(hr) < 0)

• Specific Error Codes:
• S_OK : successful normal operation

• S_FALSE : return logical false as a success code

• E_FAIL : generic failure

• E_OUTOFMEMORY : memory allocation failed

• E_NOTIMPL : method not implemented

• E_UNEXPECTED : method call at incorrect time

Data Types

• Marshaling depends on exact knowledge of the sizes of data types.

• C and C++ do not define the sizes of their types. Each compiler and platform may
define the sizes as they wish.

• COM bases its types on the NDR (Network Data Representation) types which
have specified sizes.

• COM types suitable for marshaling are defined in wtypes.idl. These declarations
include a lot of Windows specific data types as well as types useful for general
COM programming.

• We can use all these types if we import wtypes.idl in our IDL file.

Decorations

• In order to marshal efficiently COM needs to know the direction of data flow, e.g.:

[in], [out], [in, out], [out, retval]

and will marshal data only in the direction(s) specified.

• For languages that have run-time support like Java and Visual Basic, an out
parameter may be decorated with retval, indicating that those environments
make the call look like a function return value:

IDL : HRESULT Method([in] short arg, [out, retval] short *ret)

Visual Basic: Function Method(arg as Integer) As Integer

Since C++, has no such support, its interface looks like this:

C++ : virtual HRESULT __stdcall Method(short arg, short *ret)

Memory Allocation

• Memory for [in] parameters is always allocated and freed by caller.
Can use any kind of allocation, e.g., stack, heap, static.

• Memory for [out] parameters is always allocated by the method and
always freed by the caller.
• Method : CoTaskMemAlloc(ULONG size);

• Client : CoTaskMemFree(LPVOID pv);

• Memory for [in,out] is allocated by caller, may be reallocated by
method using:
• CoTaskMemRealloc(LPVOID pv, ULONG size)

• Must be freed by caller.

Pointer Decorations

• In order to marshal efficiently COM needs to know how pointers will
be used:
• [ref] : pointers are initialized with valid (non-null) addresses at method

invocation. This value can not change during method execution. All [out]
pointers must be [ref]

• [unique] : pointers may be null, can not be aliased.

• [ptr] : same as unique except it can be aliased – requires much more work of
marshaler, as it requires duplicate detection.

• Example:

HRESULT method([in,out,ref] int *pInt);

Strings

• All characters in COM are represented using the OLECHAR data type:
• typedef wchar_t OLECHAR

• IDL uses the string decoration to tell the marshaler that a null
terminated wide char string is being sent:
• HRESULT method([in,string] const OLECHAR *pOC);

• You can initialize an OLECHAR string this way:
• Const OLECHAR *pOC = OLESTR(“this is a string”);

• The C Run-Time Library provides two conversion functions:
• size_t mbstowcs(wchar_t *pOC, const char *pC, size_t count);

• Size_t wcstombs(char *pC, const wchar_t *pOC, size_t count);

Support for OLECHAR Strings

• The C Run-Time Library provides wide char string support that
parallels its ANSI char string support, e.g.:
• wcslen : return number of characters in string

(not equal to number of bytes)

• wcscpy : copy a wide source string to a wide destination string.
You have to allocate enough memory for destination.

• wcscspn : find a substring in a wide char string

• wcschr: : find first occurrence of a char in a wide char string.

• wcsrchr : find the last occurrence of a char in wide char string.

• The C++ Standard library iostreams and strings module also provide
support with:
• wcout, wcin

• wstring

BSTRs

• The BSTR type is a derived type used in Visual Basic and Microsoft Java
(and presumably C#). BSTRs are recognized by the standard
marshalers and used frequently by COM developers.

• BSTRs are length-prefixed, null terminated strings of OLECHARs.

4 0 0 0 'H' 0 'i' 0 0 0

BSTR

Length in Bytes Character Data NULL

BSTR Memory Allocation

• COM expects BSTRs to use a COM memory allocator, and provides several API
functions for handling BSTRs, declared in oleauto.h:

// allocate and initialize
• BSTR SysAllocString(const OLECHAR *pOC);

• BSTR SysAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// reallocate and initialize
• INT SysReAllocString(BSTR *pBSTR, const OLECHAR *pOC);

• INT SysReAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// free a BSTR
• void SysFreeString(BSTR bstr);

// peek at length count as OLECHAR count or byte count
• UINT SysStringLen(BSTR bstr);

• UINT SysStringByteLen(BSTR bstr)

BSTR Memory Management

• When passing BSTRs as [in] parameters, the caller invokes
SysAllocString prior to calling the method and SysFreeString after the
method has completed.

• When passing strings from a method as an [out] parameter, it is the
responsibility of the method to call SysAllocString before passing back
the string. The caller releases the memory by calling SysFreeString.

• When passing BSTRs as [in, out] parameters, you treat them like [in]
parameters.

• Reference: If you are going to use BSTRs in your project code, make
sure you look carefully at “Strings the OLE Way”, Bruce McKinney, in
MSDN online or in help.

• CComBSTR class provides a lot of help handling BSTRs. Check it out in
MSDN.

Arrays

• Fixed arrays have sized determined at compile-time:
HRESULT method([in] double arr[8]);

• Conformal arrays have size determined at run-time:
HRESULT method([in] long dim, [in,size_is(dim)] double *da);

• Varying array sends only part of array:
HRESULT method([in,out] long *first, [in,out] long *last,
[in,out,first_is(first),length_is(last-first+1),size_is(100)] long *la);

• Open array sends part of array – size is determined at run-time. Same as
above, except argument of size_is() is a variable.

Other Data Types

• We will encounter the Variant and Safe Array data types when we discuss
Automation and the IDispatch interface.

• A variant is a discriminated (tagged) union that will hold any of a large
subset of the IDL data types. There are a set of system functions designed
to help manipulate variants. These are declared in oleauto.h

• Reference: “The Ultimate Data Type”, Bruce McKinney, MSDN

• A Safe Array is a structure that holds, possibly multi-dimensioned, arrays
with descriptors of their sizes. There are a set of system functions
designed to help manipulate safe arrays. These are declared in oleauto.h

• Reference: “The Safe OLE Way of Handling Arrays”, Bruce McKinney,
MSDN

References for IDL

• MSDN/Platform SDK/Component Services/Microsoft Interface
Definition Language

• Essential IDL, Martin Gudgin, Addison Wesley, 2001

• Essential COM, Don Box, Addison Wesley, 1998

• COM IDL & Interface Design, Al Major, WROX, 1999

