
Programming
with C#

Jim Fawcett

CSE775 – Distributed Objects

Spring 2005

Overview

 Terminology

 Managed Code

 Taking out the Garbage

 Interfaces

Terminology

 CLI: Common Language Infrastructure

 CTS: Common Type System, the .Net types

 Metadata: type information in assembly

 VES: Virtual Execution System - provided by CLR

 IL: Intermediate Language

 CLS: Common Language Specification.

 Core language constructs supported by all .Net
languages.

 CLR is Microsoft’s implementation of CLI.

Managed Code

 CLR provides services to managed code:

 Garbage collection

 Exception handling

 Type discovery through metadata

 Application domains and contexts

 Fault isolation

 Interception

• Security management

• Attributes

.Net Assembly Structures

Multiple File Assembly
myLibrary.dll

Single File Assembly
myProject.exe

Manifest

Type

Metadata

MSIL code

optional

resources

Manifest

Type

Metadata

MSIL code

optional

resources

Type

Metadata

MSIL code

Type

Metadata

MSIL code

Taking out the Garbage

 All .Net languages, including C# use
garbage collection

 Garbage collection is a multi-tiered,
non-deterministic background process

 You can’t deallocate resources
immediately when objects go out of
scope.

More about Garbage

 C# provides destructors which implement Finalize()
for disposing of unmanaged resources.

 Destructors allow you to tell the garbage collector how
to release unmanaged resources.

 You should Implement
IDisposable::Dispose()

 Users of your class call it’s Dispose() to support early
release of unmanaged resources

 Your dispose should call Dispose() on any disposable
managed objects composed by your class and unregister
event handlers.

 Your member functions should call Dispose() on any
local disposable managed objects.

Implementing Dispose()

 Here’s the standard way:

public void Dispose()

{

Dispose(true); // garbage collector calls Dispose(false)

GC.SuppressFinalize(this);

}

private void Dispose(bool disposing)

{

if(!this.disposed)

{

if(disposing)

{

// call Dispose() on managed resources.

}

// clean up unmanaged resources here.

}

disposed = true; // only call once

}

Minimizing Garbage

 If you have local managed objects in frequently called
methods, consider making them members of your
class instead.

 Using member variable initializers is convenient:
class X
{ private: arrayList col = new ArrayList();
…
}
but don’t if col may be reinitialized to something else
in a constructor. That immediately generates
garbage.

Try - Finally

 Managed classes that use unmanaged resources:
handles, database locks, …

Implement Dispose() and Finalize() to provide for early
and ensure eventual release of these resources.

 But Dispose() may not be called if the using code throws
an exception. To avoid that, catch the exception and use
a finally clause:

try { /* code using disposable x */ }
catch { /* do stuff to process exception */}
finally { x.Dispose(); }

The using short-cut

 C# provides a short cut for try-finally:
using(x) { /* use x object */ }

is equivalent to:
try { /* use x object */}
finally { x.Dispose(); }

 You can’t have multiple objects in the using
declaration. You will need to nest the using
statements to handle that case. It’s
probably easier just to use try-finally if you
need to dispose multiple objects.

Interfaces

 Abstract class provides the root of a class hierarchy.

 Interface provides a contract:
it describes some small functionality that can be
implemented by a class.

 Interfaces can declare all the usual types:

 Methods, properties, indexers, events.

 Interfaces can not declare:

 Constants, fields, operators, instance constructors, destructors,
or types.

 Any static members of any kind.

 Any type that implements an interface must supply all its
members.

Using Interfaces

 Functions that accept and/or return
interfaces can accept or return any
instance of a class that implements
the interface.

 These functions bind to a behavior,
not to a specific class hierarchy.

Implementing Interfaces

 .Net languages support only single inheritance of
implementation, but multiple inheritance of interfaces.

 Members declared in an interface are not virtual.

 Derived classes cannot override an interface method
implemented in a base class unless the base declares
the method virtual.

 They can reimplement it by qualifying the method
signature with new.

 This hides the base’s method, which is still accessible to
a client by casting to the interface.

 Hiding is generally not a good idea.

Overrides vs. Event Handlers

 Prefer overriding an event handler over
subscribing to an event delegate.

 If an exception is thrown in an event handler
method the event delegate will not continue
processing any other subscribers.

 Using the override is more efficient.

 There are fewer pieces of code to maintain.

 But make sure you call the base handler.

 When do you subscribe to an event?

 When your base does not supply a handler.

Interception

AppDomain

client context

Component Context

RPC channelproxy interceptor stub

object

The End for now

