
Why COM and .Net?
Jim Fawcett

CSE775 – Distributed Objects

Spring 2005

COM versus .Net

• COM Strengths
• It’s everywhere:

• Windows operating system

• GUI controls

• Word, Excel, Visio

• COM makes these programmable!

• .Net CLR is a COM component

• It is accessible from clients built with different
languages:

• C, C++, C#, VB, Javascript, …

• Clients and components don’t need to
support the same threading models

• COM Weaknesses
• COM is complex!

• COM has a very weak object model

• It is an aging technology
• Still, heavily used by Microsoft (even in WinRT)

• .Net Strengths
• Framework and language support is very well

designed.

• Component development is much simpler than
COM.

• Is accessible from different .Net languages.
• Really, they are almost the same!

• Documentation is excellent.

• There are a lot of new books and articles
(some are even good).

• .Net Weaknesses
• Executables only run on machines equipped

with the CLR.
• Can download .Net framework, free, from

microsoft for XP and Vista.

• Won’t run on Lunix, … (neither will COM)

• Managed model is not always appropriate.

Comparison of Object Models

• C++ Object Model
• All objects share a rich memory model:

• Static, stack, and heap

• Rich object life-time model:
• Static objects live for duration of the

program.

• Objects on stack live within a scope defined
by { and }.

• Objects on heap live at the designer’s
discretion.

• Semantics based on a deep copy model.
• That’s the good news.

• That’s the bad news.

• For compilation, clients carry their
server’s type information.
• That’s definitely bad news.

• But it has a work-around, e.g., design to
interface not implementation. Use object
factories.

• .Net Object Model
• More Spartan memory model:

• Value types are stack-based only.

• Reference types (all user defined types
and library types) live on the heap.

• Non-deterministic life-time model:
• All reference types are garbage collected.

• That’s the good news.

• That’s the bad news.

• Semantics based on a shallow reference
model.

• For compilation, client’s use their
server’s meta-data.
• That is great news.

• It is this property that makes .Net
components so simple.

Comparison of Object Models

• C++ Object Model
• All objects share a rich memory model:

• Static, stack, and heap

• Rich object life-time model:
• Static objects live for duration of the

program.

• Objects on stack live within a scope defined
by { and }.

• Objects on heap live at the designer’s
discretion.

• Semantics based on a deep copy model.
• That’s the good news.

• That’s the bad news.

• For compilation, clients carry their
server’s type information.
• That’s definitely bad news.

• But it has a work-around, e.g., design to
interface not implementation. Use object
factories.

• COM Object Model
• Weak object model – based on C++, but:

• No inheritance of implementation

• No deep copies

• No deep assignment

• No construction with parameters

• COM functions accept a very limited set of
argument types

• COM strengths
• Strong support for updating systems

composed of COM components – simply
copy the revised dll over the original. You
don’t need to rebuild the client or other
parts of the system

• Supports a limited form of garbage
collection based on reference counting.

• .Net also supports updating and has full
garbage collection.

Language Comparison

• Standard C++
• Is an ANSI and ISO standard.

• Has a standard library.

• Universally available:
• Windows, UNIX, MAC

• Well known:
• Large developer base.

• Lots of books and articles.

• Programming models supported:
• Objects

• Procedural

• Generic via templates

• Separation of Interface from
Implementation:
• Syntactically excellent

• Implementation is separate from
class declaration.

• Semantically poor

• See object model comparison.

• .Net C#
• Is an ECMA standard, becoming an ISO

standard.

• Has defined an ECMA library.

• Mono project porting to UNIX

• New, but gaining a lot of popularity
• Developer base growing quickly.

• Lots of books and articles.

• Programming models supported:
• objects.

• Separation of Interface from
Implementation:
• Syntactically poor

• Implementation forced in class
declaration.

• Semantically excellent

• See object model comparison.

Language Comparison

• Standard C++
• Uses header files to declare class

services

• Program parts must be compiled using
same compiler to ensure
interoperability
• Client and components must share the

same threading and security models

• COM
• Uses Interface Definition Language (IDL)

to declare component services

• IDL compiler generates:
• Cmpnt.h – interface declarations

• Cmpnt_i.c – defines GUIDS

• Cmpnt_p.c – defines proxy

• Interoperability across multiple
languages and any compiler that
provides support for COM
• C, C++, Visual Basic, JavaScript, …

• Components and client may use different
threading and security models.

End of Comparison

