
COM+

Jim Fawcett

CSE775 – Distributed Objects

Spring 2006

References

 COM and COM+ Primer, Alan Gordon, Prentice Hall, 2000

 COM Programming with Microsoft .Net, Templeman, Mueller,
Microsoft Press, 2003

 COM and .NET Component Services, Juval Lowy, O’Reilly, 2001

 Understanding COM+, David Platt, Microsoft Press, 1999

 Windows 2000 Brings Significant Refinements to the COM(+)
Programming Model, Don Box, MSJ, May 99

 House of COM, Don Box, MSJ, May 99

COM+ Objectives

 Provide the infrastructure for Enterprise Computing:

– Application is used by many types of people in an organization

– Application is intranet and/or internet capable

– Provides support for security

– Provides reliable data access and communication over unreliable
network connections

 Fundamental three tiered computational model

– Presentation layer on client’s desktop

– Business logic layer on application server

– Data access layer on remote database servers

What is COM+ ?

 COM+ provides the following services:

– Transaction services

– Security services

– Synchronization services

– Queued components

– Event Service

– JIT Activation and Object Pooling

– In Memory Database

– Load Balancing

 Many of these services are available administratively as well as
programmatically.

COM+ Services

 Transaction services:
Coordinates the use of transactions across several objects.

 Security services:
Provides both programmatic and administrative security services at the
interface and method levels

 Synchronization services:
Provides both programmatic and administrative synchronization of
components using the Thread Neutral Apartment (TNA), sometimes also
called the Rental Apartment model.

 Queued components:
Implements store and forward messaging using MSMQ.

 Event Service:
Provides event objects and subscription lists stored in COM+ catalog.

 In-Memory Database:
Automatic caching of back-end tables on middle-tier machines (ADO.Net)

 Load Balancing:
Distributes object creation requests among a number of servers in a
cluster.

COM+ Vs. .Net

 “COM+ component services are .Net component services.”

“.Net does not replace COM+ because .Net does not provide
component services! This implementation has always been the
intention, and the reason that we had COM+ when Windows 2000
was released is that Microsoft decided that that part of the
component framework was ready for release and would be useful
to COM but the managed runtime part (what we call .Net) wasn’t.”

COM+ Architecture

 Attributes
– Attribute based computation allows the designer or a user to specify

attributes that determine how a component behaves.

– COM+ recognizes attributes for:
• Transactions, synchroniation, object pooling, JIT activation, events, security,

queuing (Gordon, pg 428)

 Applications
– A COM+ application is a group of one or more components that are

administered as a unit and run in the same process.

– A COM+ application can include components from multiple COM servers.

 Catalog
– COM+ stores its attribute values in a new database called the Catalog

– The Component Services Explorer is a visual interface for the COM+
catalog.

 Configured Component
– To configure a component to use COM+ services you must first add the

component’s server to a COM+ application.

Context

 A COM+ context is the run-time environment in which one or more
compatible COM+ objects in a particular process execute.

– A compatible object is one that shares the runtime requirements specified
for the context.

– All of the objects that reside in a context share the same attribute settings

Process

MTA Apartment

Context

Object

STA Apartment

Context

Object

Context

Object

Object

COM+ Library Application

Client’s Process

client context

Component Context

RPC channelproxy interceptor stub

object

COM+ Server Application

Component DLL

Component

Context

client

proxy manager

RPC channel

COM+ Server

Application

(DLLHOST.EXE)

proxy interceptor stub

object

client

context

Interception

 If the client of an object configured for COM+ resides in a different
context than the object, then a light weight proxy, called an
interceptor, is set up between the client and object.

 It is the interceptor that handles transactions, security, and TNA
synchronization.

 The nature of these services is determined by the COM+ object’s
context attributes.

– The context attributes can be set programmatically or administratively

Context

 Under Windows COM+ partitions a process into contexts.

– Each context is a collection of objects that share runtime
requirements.

– A process may contain more than one context to separate
incompatible objects from one another.

– Each context in a process has a COM object called the object
context (OC).

– Objects in the context access OC by calling CoGetObjectContext
and using the OC interact with the services provided by their
context.

– Proxies are used to allow objects to make calls across context
boundaries.

 Each COM+ Application defines a Context.

Applications

 Applications are Containers for Components

Application Properties

 A COM+ Application is a group
of one or more COM+
components that are
administered as a group and
run in the same process.

 A COM+ Application can include
components from multiple COM
servers (dlls).

 An application has a set of
properties that define the
context of the components it
contains.

Component Properties

 The properties that can be set
for individual components are
affected by the Application’s
property configuration.

 Individual methods can have
security roles applied to them.

Security

 Define Roles

 Add users to roles

 Select allowed roles
for each method

Security

Unauthorized User

Object Pooling

Concurrency Control

Synchronization via TNA

Synchronization
disabled results
in some string
garbling.

Synchronization Required
enforces orderly access to
shared string by each thread.

Context

 A COM+ context is the run-time environment in which one or more
compatible COM+ objects in a particular process execute.

– A compatible object is one that shares the runtime requirements specified
for the context.

– All of the objects that reside in a context share the same attribute settings

Process

MTA Apartment

Context

Object

STA Apartment

Context

Object

Context

Object

Object

Programmatic Access to Context

Accessing object
context.

Accessing Context Properties

Context and Apartments

 Context determines what service activities are performed for a
COM+ configured object.

– A context belongs to one and only one apartment

– Communication between contexts results in light-weight marshaling
via interceptor

 Apartment determines what marshaling activites are performed
for any COM object.

– An apartment can contain many contexts

Context

 Under Windows COM+ partitions a process into contexts.

– Each context is a collection of objects that share runtime
requirements.

– A process may contain more than one context to separate
incompatible objects from one another.

– Each context in a process has a COM object called the object
context (OC).

– Objects in the context access OC by calling CoGetObjectContext
and using the OC interact with the services provided by their
context.

– Proxies are used to allow objects to make calls across context
boundaries.

HRESULT CoGetObjectContext(REFIID riid, LPVOID **ppv)

Object Context

IObjectContextInfo

IContextState

IGetContextProperties

IObjectContext

IObjectContextActivity

ISecurityProperty

HRESULT CoGetCallContext(
REFIID riid, LPVOID **ppv)

Call Context

ISecurityCallContext

IServerSecurity

ICancelMethodCalls

Configuration and Interception

 COM+ has a catalog manager that uses a configuration catalog
database (RegDB). It describes services that are carried out by
COM+ executive before and after forwarding calls to component.

 Configured services include:

– transactions

– syncronization

– object pooling

– declarative authorization

– queueing

 These services are rendered by interception:

– If needed to provide services COM will provide a proxy that intercepts
component method calls to inject configured services.

Configured Components

 To build and use a COM+ configured component you must:

– Create a COM+ application using the Component Services Explorer
(Gordon, pg 446).

– Set context-wide attributes through its properties dialog (Gordon,
chap 12).

– Add the component to this application (Gordon, pg 451).

– Set context attributes for this class and its methods using
Component Services Explorer (Gordon, chap 11).

Administrative View of Configured Component

Configuring Component

Requirements to Use COM+

 Must be part of an NT Domain or Windows Active Directory to
use all of COM+ facilities.

 COM+ components must be “configured”.

Requirements for COM+ Components

 Must be In-Proc (dll-based) components.

– These may run in a client’s address space, or hosted by a surrogate
process, called dllHost.exe.

 Must be self registering.

– Provide DllRegisterServer and DllUnregisterServer functions.

 All interfaces and methods must be described in a type library.

– You can bind the type library into the dll that contains the
component.

 Must provide support for marshalling their interfaces.

– Use typelibrary marshaling via the oleautomation attribute in IDL or
provide proxy/stub dll.

Architecture Summary

 COM+ is fully integrated with Windows and COM.

– Windows 2000, Windows XP, Windows Server 2003

 It is a run-time environment designed to host in-proc COM
components.

 COM+ is designed to provide scalable distributed enterprise
applications.

 It uses declarative statements to take advantage of
transactions, serialization, and security. It does this by using
classes with attributes and a context manager.

COM+ Services Summary

 COM+ supports

– Just In Time (JIT) activation object not instantiated until client

makes a call to an interface method

– early deactivation COM+ may deactivate component before

client calls final release and transparently reactive when needed

– pooling of objects COM+ maintains a pool of activated objects

for distribution to incoming clients. This avoids many activations
and deactivations.

– shared properties and database access through ODBC

– transactions

– activities

– security identities

COM+ Transactons

 Satisfy the ACID properties:

– Atomic: all operations that make up a transaction will succeed or
fail as a unit.

– Consistent: data being operated on during a transaction will
continue to be internally self consistent

– Isolated: concurrent transactions can not see each others partial
and uncommitted results.

– Durable: once committed all updates will persist even in the event
of a system failure.

COM+ Security

 COM+ supports a role based security model

– roles are used to provide declarative authorization that grants or
denies specific permissions

– the system administrator can bind roles defined in a component to
specific users and user groups

 COM+ also supports programmatic security

– programmatic security is defined by interfaces and code used to
determine proper access to a component through the

IObjectContext::IsSecurityEnabled and
IObjectContext::IsCallerInRole

methods and the ISecurityProperty interface.

Synchronization

 Starting with Windows 2000 COM has a new Thread Neutral
Apartment (TNA).

– Each process has at most one TNA.

– All incoming calls to a TNA are serviced by the caller’s thread (so
there will be no windows message loop bottleneck).

– ThreadingModel=Neutral is the preferred model for components
with no user interface.

– User interfaces should still be housed in STAs.

– The combination of ThreadingModel=Neutral and
Synchronization=Required is equivalent to the rental model where
any thread can call into the object, but only one thread at a time.

Synchronization (continued)

 The Single Threaded Apartment (STA) is no longer the primary
means of serializing calls to an object (it is still necessary for
user interface code).

 All COM components can now use activities to control
concurrent access. Using this approach:

– a thread switch is no longer required

– the windows message queue is no longer used for serialization

Activity

 An activity is a collection of one or more contexts that share a
concurrency model.

 Activities are used to enforce call synchronization.

 Contexts that do not belong to an activity get no call serialization.
Any thread in the context’s apartment can enter the context at
any time.

Contexts vs. Activities

 A context is a set of objects that share common run-time
attributes.

 A context is the unit of interception. Calls between incompatible
contexts are marshalled through proxies.

 An activity is a collection of one or more contexts that share
common synchronization requirements. COM allocates a
process-wide lock to each activity.

 Under COM+ clients don’t share objects. They are based on
private objects that may share common state protected by
transactions.

Transaction Management

 Transactions are managed by the Distributed Transaction
Coordinator (DTC).

 The DTC is responsible for coordination of transaction outcome.

– it is responsible for maintaining the ACID properties

– it uses a lock management strategy based on transaction-affinity
locks.

– When a lock is held by a transaction resource like a database
manager it can be reentered from anywhere in the transaction
since all objects in the transaction stream share a single DTC
transaction.

 Transaction aware resources like ODBC and Microsoft Message
Queue can access the context’s transaction when an object
requests service.

Transaction Streams

 A transaction stream is a collection of contexts in space (across
process and machine boundaries) that share a transaction.

 A transaction stream is completely contained inside an activity.

 All objects inside a transaction stream share access to a single
transaction in time.

 COM will automatically start a new transaction if the stream’s
previous transaction has ended.

Transaction Failures

 Each context in a transaction stream keeps track of whether the
its objects are satisfied with the current state of the transaction.
Each object can set or clear a “happy” state by calling
IContextState::SetMyTransactionVote.

– A transaction can commit only if all contexts in the transaction
stream are satisfied.

– If one or more contexts are “unhappy” when the transaction root
deactivates the transaction will be aborted and any operations that
are protected by the transaction will be rolled back.

– When an object returns control with its unhappy state set and its
done state set this tells COM it has detected an unrecoverable error
and the transaction is doomed to failure.

Non-Blocking Method Invocation

 An invocation of a method now has a COM object associated
with it to give the client more control

 Client-side threads can now issue asynchronous calls and regain
control immediately - they do not block waiting for the method
to return.

 On the server side objects can free up the RPC thread used to
invoke the method to allow more concurrent calls to be
serviced.

 The client and server can elect to use non-blocking invocation
independently.

 For this to work the interface is annotated in IDL as supporting
non-blocking invocation using the [async_uuid] attribute.

Asynchronous Calls

 Interfaces supporting asynchronous calls provide the usual
synchronous method, Sum(…) for example.

 They also provide two additional methods:

– Begin_Sum(…) uses the [in] parameters

– End_Sum(…) uses the [out] parameters

 The standard proxy manager implements the ICallFactory
interface to allow the caller to create a call object that imple-
ments the asynchronous version of the interface.

 Clients can either:

– poll the object for completion

– implement the ISynchronize interface to allow the call object to
signal completion.

Call Objects

Proxy Manager

interface proxy

ICallFactory

IClientSecurity

IMultiQI

ISum

Call Object

AsyncISum

ISynchronize

ICancelMethodCalls

Integration with MSMQ

 Starting with Windows 2000 a class can be configured to
support transparent queuing using Microsoft Message Queue
(MSMQ).

 This allows the client to create a queue aware proxy that
buffers all calls until the object is released.

 Once released the proxy uses MSMQ to send a message to the
server which then replays the method calls issued by the client.

 MSMQ supports guaranteed delivery over unreliable network
links.

Other Features

 COM+, under Windows 2000, supports:

– a new variant of marshalling between standard and custom
marshalling to allow components to create client side
handlers that do some work before method invocation

– COM supports pipes to facilitate bulk transfer of data within
a method call.

– improvements to the security model

• better control over when caller’s tokens are inspected

• supports delegated trusts

– activation-time load balancing by picking lightly loaded
remote machines for activation

– object pooling

Relationship with .Net

End of Presentation

