CSE775 – Distributed Objects

Spring 2005

Midterm Instructor’s Solution
This is a closed book examination. Please place all your books on the floor beside you. You may keep one page of notes on your desktop in addition to this exam package. All examinations will be collected at 8:20. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to discuss your question. I will answer all questions about the meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to answer first those questions you believe to be easiest.

1. Suppose that a COM component has been activated and performed some processing that resulted in a std::map< std::string, list<std::string> >. Now, write the IDL, server code, and client code for a function call that will result in the client holding a std::map< std::string, list<std::string> > with the same values as in the server’s map.

See code handout and

CSE775/Midterm/CodeSp05

2. What is the importance of the IClassFactory interface? What does it imply about the client of this interface? Describe its methods and what they are used for.

IClassFactory is used, most often by the COM run-time, to create an instance of the object(s) provided by the server, using its CreateInstance method. It also provides a method LockServer that allows users to hold the server in memory, even if all references to it are released. This is done as an optimization to avoid frequent creations in a high load scenario.

The significance of the interface is that clients are not allowed to have any type information about the objects created (to keep clients loosely coupled to their serving objects) and so, can not call new, but instead, must use an object factory.

So, the implication is that the client wants to bind to an interface abstraction, not a concrete object.

3. Describe the COM Interface management rules. What must every COM interface derive from, either directly or indirectly? Name each of the methods that every COM interface is required to have and describe their purposes.

Every COM interface must derive, either directly or indirectly, from IUnknown. This interface has three methods that the deriving code must implement: QueryInterface that allows a client to ask for a pointer to some specific interface using an IUnknown pointer or a pointer to some other interface implemented by the component. It must implement Addref in order to increment the component’s reference count, and finally, it must implement Release, in order to decrement the components reference count.

The COM interface management rules require:

Immutability – Once published, COM interfaces should not change.

Component identity – every pointer to IUnknown returned to the client has the same address.

Reflexivity – If we can successfully query for interface B from A, then a query from B for interface A must succeed.

Transivity – If we can successfully query for interface B from A and for interface C from B, then we must be able to successfully query for C from A.

Symmetry – If we can successfully query for interface B from A we must be able to successfully query for A from B, even if A and B are the same.

Error Management – all methods on a custom COM interface should return an HRESULT. These should be tested with the SUCCEEDED or FAILED macros.
4. Describe every advantage and disadvantage of COM that you can think of?

Advantages:

COM provides loose coupling: we can update a program composed of COM components simply by replacing an older version of a component with the new version. We do not have to rebuild the client or any of the other components.

A program can be composed of COM components built with different compilers and with certain different languages (C, C++, Visual Basic, …).

Clients don’t need to know location of server, just its GUID.

Components with different threading models can be safely combined into a single system.

COM supports inter-process and remote communication.

COM services are accessible to some script languages through IDispatch.

The technology works on every windows platform since windows 95.

Disadvantages:

COM has a very weak object model. It does not support inheritance of implementation and you can pass only a very limited number of types through its interfaces.

COM is complex and not all of its technologies are very well documented.

COM does not support parameterized constructors. All initializations are default (If a component supports the persistence interfaces then an object can be created with state from an earlier invocation, using monikers).

Its initialization, marshalling, and event model, based on connection points, are expensive, from a performance point of view.
5. Describe every piece of an in-process COM server, at least as implemented in inproc_Ex1
. Describe their functions as completely as you can.

There are at least three interfaces: IUnknown, IClassFactory, and a custom interface and/or IDispatch. IUnknown supports object lifetime and finding server functionality at run-time. IClassFactory supports the creation of objects for the client, and the custom interface and/or IDispatch support client use of those objects. These interfaces are described using IDL, specifying GUIDs to identify the COM server, each of its interfaces, and its type library.

There is a class to implement the class factory and one or more classes to implement the Custom and/or IDispatch interfaces. This later class must support reference counting, through IUnknown, by providing a reference count, often named m_ref.

There are five functions implemented in the server dll: DllMain, DllGetClassObject, DllRegisterServer, DllUnregisterServer, and DllCanUnloadNow.
DllMain supports unparameterized initialization, but is not used for that purpose often.
DllGetClassObject is a fixed reference, known to the COM run-time, by which it gets access to the components class factory.
DllRegisterServer and DllUnRegisterServer support location transparency for the client by writing to the registry the path on which the server is found, along with other descriptive information, including the component’s threading model.
DllCanUnloadNow tells the COM run-time whether there are any current clients of the server and whether it has been locked in memory.

There are two global counters typically called g_cComponents and g_cServerLocks used to decide whether the Dll can be unloaded from memory.

An in-process component could also be described in terms of its files and their functions. This, also, is a satisfactory answer and is detailed on the next page.

An in-process component implemented without the support of ATL, as in the case of inproc_Ex1, can be described in terms of the files:

comp.idl – source file providing a description of the server, its interfaces, and type library, using IDL, the Interface Definition Lanuage.

comp.cpp – source code providing definitions for the interfaces, class factory, and class(es) that implement the component’s interfaces. These are responsible for reference counting and server locking, as well as implementing the component’s service contract.

comp.h – generated by MIDL from comp.idl, provides C++ declarations for the interfaces specified in comp.idl and also provides declarations for the IID and CLSID forms for the GUIDS specified in comp.idl.

comp_i.c – generated by MIDL from comp.idl, provides definitions for the GUIDs declared in comp.h.

comp_p.c – generated by MIDL from comp.idl, provides definitions of a proxy, used by clients to marshall data to and from the component when it resides in a different apartment than the invoking thread, and for a stub used by the component to interact with the client’s proxy.

comp.def – defines dll ordinals for each of the component’s dll methods: DllGetClassObject, DllCanUnloadNow, DllRegisterServer, and DllUnregisterServer. The responsibilities of these DLL functions are described on the previous page.

Registry.h and Registry.cpp – provide the component with services to register its GUIDS, location, and “user friendly” strings in the Windows registry.

6. Why is C++ not an ideal language for implementing components? Be as specific as you can be.

C++ uses a deep copy value-based object model. It supports the location of objects in its stack memory (unlike C# and Java that only support location of references there for all user defined types). This means that anytime a client’s server classes change it is very likely that the client will have to be recompiled because the object sizes in stack memory may have changed.

Furthermore, the client holds all of the type information about the servers it uses through the inclusion of their header files. This is necessary in order for the client to compile, since all its objects must be declared. But this means that the client will need to be recompiled if the text of the server’s header file changes. This can happen, for example, by adding a new private data member to the server class.

There is no binary standard for C++. This means that code generated by different C++ compilers may not interoperate, e.g., sizes of types are not defined by the C++ Standard, and so are machine and compiler dependent. Also, exceptions thrown by code generated with one compiler may not be catchable with code compiled with a different compiler. This means that without other standards, like the COM standard, interoperability between codes compiled with different compilers and in possibly different languages will be difficult, if possible.

C# and Java use a shallow copy reference-based model for user defined types. Also C# and Java have binary standards for their primitive value types. This avoids the size problem in client’s stack frames.

Java and C# use metadata to determine type information (so no header files) which means that clients do not hold that type information, and so, do not have to change when a serving component changes.

7. How is an ActiveX control different from a simple COM object? When would you prefer to use an ActiveX control over a simple COM object?

ActiveX controls are COM objects that provide at least two of the following three things: a user interface, events, based on connection points, and properties, accessed through a dispatch interface.

All of a control’s interfaces are either Dispatch or Dual so some scripting languages (VBScript, Javascript, python, and others) can use the control’s facilities.

A control must also provide interfaces that containers will call and must know how to call container interfaces. These container/control exchanges have to do with initializing the container’s visual presentation, negotiating for window real estate, activating the control by a creational call from the container, and adopting some set of container ambient properties by the control.

You should use an ActiveX control, instead of a simple COM object, whenever the component must be hosted by a container.
8. Describe the COM activation, client utilization, and shut down processes for an out-of-process component.

For a multi-threaded component:

The server is started and registered with /RegServer on its command line.

The Server is restarted (perhaps by a client call).
The server calls CoInitializeEx(Coinit, Multithreaded) and creates its factory, using the C++ operator new.
It Calls CoRegisterClassObject.
It sets an event and calls WaitForSingleObject on the event handle.

The client calls CoInitialize(Ex) and CoCreateInstance.
COM run-time then calls the class factory CreateInstance, using the reference it found in the Running Object Table.
COM returns a pointer to the requested interface to the client.

Every call from a client to the component is marshaled. This results in RPC threads being dispatched and directly accessing the code of the component.

When the client calls its final release on the component, the server Release function resets the event, awakening the component’s main thread.
The component then calls CoRevokeClassObject and CoUninitialize and shuts down.

The client calls CoUninitialize to end its use of the COM run-time.

For out-of-process components that use the Single Threaded Apartment model, the server calls CoInitialize() and starts a windows message loop.

Each call from the client causes an RPC thread to be dispatched to drop a message into the server’s message loop. This results in a sequential access to all server methods for all clients.

Call data and results are marshaled to the component and back to the client.

When the client calls its final release a PostQuit message is dispatched to the server via an RPC thread.

All other operations are the same as for the multi-threaded case.

9. How will an out-of-process component join an apartment? How is the operation of an out-of-process component in a single threaded apartment different from one in a multithreaded apartment?.

The out-of-process component calls Coninitialize() if it must reside in an STA. Otherwise it calls CoInitialzeEX(CONINIT, MULTITHREADED) to create an MTA.

A component in an STA is accessed from outside this apartment by means of a windows message loop it creates. All client requests are translated by the client’s proxy and RPC channel into windows messages that result in a call on the appropriate function, serviced by the component’s main thread.

A component in an MTA is accessed from outside this apartment directly by RPC threads while its main thread is blocked on the handle of an event.
10. Suppose a client calls CoInitializeEx(CONINT_MULTITHREADED). What happens when that client calls CoCreateInstance(…) on an in-process component that has no threading registry entry? Under what conditions will a component be loaded into the client’s apartment?

Since the component has no threading registry entry it must be loaded into the client’s primary STA. If the client has none (never called CoInitialize(NULL) on any thread) then COM will create one and load the component into it.

In order to be loaded into the client’s MTA an in-process component must have a registry entry of free or both.
� This is a question about the anatomy of a component, not the details of its design.

