Notifier – A Prototype for Project #3

This prototype analyzes source code in a file, line by line
. Notifier looks for a matching condition in each line, and if found, sends a notification to any other software component that registered for that event. The condition for matching is determined by the function

virtual bool matchCriteria::match(const string &line);

The matchCriteria class is a base class that the client is expected to derive from and override match(…) to provide application specific matching criteria. The client is also expected to derive from a eventsProc base class and override its virtual members found(…) and done(). These functions determine application specific processing that occurs when the match event happens or when the whole file has been searched. We could use this prototype to analyze files for proper preprocessor guards, for manual and maintenance pages, and for test stubs. You can probably think of other things it might be useful for, with appropriate derived classes.

1. searchFile<someCriteria> is the central class in this system. Its responsibilities are to search a file, attached to an input stream, and find any lines that match some specific criteria. It does this when you invoke the search function.

2. matchCriteria is a base class, intended to provide a protocol for all classes that may be used as the template parameter in the searchFile class. MatchCriteria has two virtual functions, match(…) and line(). The match(…) function defines conditions that result in a match for its input string argument and returns a bool indicating whether the input matched or not. The line() function can be used to return the matching line.

3. eventsProc is a base class, intended to provide a protocol for application specific processing that should happen when a matching event occurs, or when the search ends. It provides two virtual functions found(string&) and done(). When a file line satisfies the matching condition, an object of the searchFile<matchCritieria> class calls found(line), passing it the matching line. The found function is responsible for carrying out all application processing that should occur for the matching line. Its done function can be used to clean up application processing at the end of the file analysis.

� Reading by lines is not a great way to analyze code – better to use tokens and semi-expressions. However, this keeps the example relatively simple.

