
Using Inheritance

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2014

Topics: Using Inheritance

• Protocol Classes

• Hooks

• Mixin Classes

• Sharing common code

• Reusing Implementation

Liskov Substitutability (LS)

• Public inheritance is a contract for substitutability.

• Any base class reference or pointer may be bound to an instance of
any class derived from that base.

• The compiler will ensure that derived public interfaces support LS
syntactically:

• Derived classes inherit all of the inheritable methods of the base class
and so can receive its messages.

• It is up to you to ensure semantic LS.

• Your class must be a semantic specialization of the base.

Protocol Classes

• A protocol class (C++ interface) provides a language for clients to use
when interacting with any of its derived class instances. It has:

• No data

• No declared constructors

• A virtual destructor

• A set of pure virtual functions that define the hierarchy’s language.

• All classes are derived from the protocol base class using public
inheritance.

Protocol Example

graphics

object

line circle polygon

display

list

Hooks

• A hook is a base class that supports modification of a library’s
behavior by applications designed to use the library, without
modifying any of the library’s code.

• The Hook class provides a protocol for application designers to use
and a set of virtual methods that are overridden to provide required
application behavior.

• One very common usage provides a way for applications to respond
to events that occur within the library.

Hook Example

Operation:

 Register(command*);

 Operation();

invoker

Operation:

 execute()=0;

command

Operation:

 execute();

concreteCommand

client
Operation:

 action();

receiver

client code

library code

The Hook
Library code

invokes the hook
when specific
events occur.

What’s
actually called

Mixins

• A mixin class provides a specialized set of behaviors intended to be
used through multiple inheritance with other classes.

• Mixins can be used to provide reference counting, locking, memory
management, and other specialized behaviors as services to any class
that needs them.

Mixin Example

Lock Queue

LockableQueue

Share Common Code

• A base class may provide default implementations of some or all of
the base class protocol. These, then, are shared by all derived classes
that do not override the defaults.

• When using concrete base classes, however, you need to be careful
that you support reasonable semantics:

• Disallow assignment of derived instances to base instances or derived
instances of one type to an instance of another type through base pointers
or references.

• You can make the base class abstract by including a pure virtual function and make the
base assignment private.

• Provide assignment operators for each of the derived classes.

Reusing Implementation

• C++ supports reuse of implementation with public, private, and
protected inheritance.

• You should prefer composition unless:

• You need access to protected data from the base class, or:

• You want to support polymorphic operations in member functions of the
derived class, perhaps to bind to any derived object passed to a member
function by base reference or pointer without knowing the concrete class of
the object.

End of Presentation

