
C++/CLI

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2009

References

 C++/CLI
– A Design Rationale for C++/CLI, Herb Sutter,

http://www.gotw.ca/publications/C++CLIRationale.pdf

– Moving C++ Applications to the Common Language Runtime, Kate
Gregory,
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a
7dfd6ea3-138a-404e-b3e9-55534ba84f22

 Manged Extensions
– C++/CLI in Action, Nishant Sivakumar, Manning, 2007

http://www.gotw.ca/publications/C++CLIRationale.pdf
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a7dfd6ea3-138a-404e-b3e9-55534ba84f22

Comparison of Object Models

 Standard C++ Object Model
– All objects share a rich memory

model:
• Static, stack, and heap

– Rich object life-time model:
• Static objects live for the duration of

the program.

• Objects on stack live within a scope
defined by { and }.

• Objects on heap live at the
designer’s discretion.

– Semantics based on deep copy
model.

• That’s the good news.

• That’s the bad news.

– For compilation, a source file must
include information about all the
types it uses.

• That’s definitely bad news.

• But it has a work-around, e.g.,
design to interface not
implementation. Use object
factories.

 .Net Managed Object Model
– More Spartan memory model:

• Value types are stack-based only.

• Reference types (all user defined
types and library types) live on the
managed heap.

– Non-deterministic life-time model:
• All reference types are garbage

collected.

• That’s the good news.

• That’s the bad news.

– Semantics based on a shallow
reference model.

– For compilation, a source file is
type checked with metadata
provided by the types it uses.

• That is great news.

• It is this property that makes .Net
components so simple.

.Net Object Model

value type

on stack

Reference Type

handle on Stack

Body on Heap

bool, byte, char,

decimal, double,

float, int, long, sbyte,

short, struct, uint,

ulong, ushort

object, string,

user defined type

Example:

 int x = 3;

Example:

 myClass mc = new myClass(args);

 string myStr = "this is some text";

Language Comparison

 Standard C++
– Is an ANSI and ISO standard.

– Has a standard library.

– Universally available:
• Windows, UNIX, MAC

– Well known:
• Large developer base.

• Lots of books and articles.

– Programming models supported:
• Objects

• Procedural

• Generic

– Separation of Interface from
Implementation:

• Syntactically excellent

– Implementation is separate
from class declaration.

• Semantically poor

– See object model
comparison.

 .Net C#, Managed C++, …
– Is an ECMA standard, becoming an

ISO standard.

– Has defined an ECMA library.

– Mono project porting to UNIX

– New, but gaining a lot of popularity
• Developer base growing quickly.

• Lots of books and articles.

– Programming models supported:
• objects.

– Separation of Interface from
Implementation:

• Syntactically poor

– Implementation forced in
class declaration.

• Semantically excellent

– See object model
comparison.

Library Comparison

 Standard C++ Library

– Portable across most platforms
with good standards conformance

– I/O support is stream-based

• console, files, and, strings

– Flexible container facility using
Standard Template Library (STL)

• But no hash-table containers

– No support for paths and
directories

– Strings, no regular expressions

– No support for threads

– No support for inter-process and
distributed processing

– No support for XML

– Platform agnostic

 .Net Framework Class Library

– Windows only but porting efforts
underway

– I/O support is function-based

• console and files

– Fixed set of containers that are not
very type safe.

• Has hash-table containers

– Strong support for paths and
directories

– Strings and regular expressions

– Thread support

– Rich set of inter-process and
distributed processing constructs

– Support for XML processing

– Deep support for Windows but
very dependent on windows
services like COM

Comparison of Library Functionality

Functionality
.Net Framework

Libraries
Standard C++ Library

Extendable I/O Weak Strong

strings Strong Strong

Composable Containers Moderately good Strong

Paths and Directories Strong No

Threads Strong No

Sockets Moderately good No

XML Strong No

Forms Strong No

Reflection Strong No

Comparison of Library Functionality

Functionality
Support Provided in
Code from Website

Support Provided by
you in Projects S’09

Extendable I/O - -

strings - -

Composable Containers HashTable No

Paths and Directories FileInfo, FileSystem No

Threads Thread, Lock classes No

Sockets SocketCommunicator No

XML Reader, Writer, no DOM XMLDOM class

Forms - -

Reflection No No

Managed C++ Syntax

 Include system dlls from the GAC:

– #include < System.Data.dll>

– #include <mscorlib.dll> - not needed with C++/CLI

 Include standard library modules in the usual way:

– #include <iostream>

 Use scope resolution operator to define namespaces

– using namespace System::Text;

 Declare .Net value types on stack

 Declare .Net reference types as pointers to managed heap

– String^ str = gcnew String(”Hello World”);

Managed Classes

 Syntax:

class N { … }; native C++ class
ref class R { … }; CLR reference type
value class V { … }; CLR value type
interface class I { … }; CLR interface type
enum class E { … }; CLR enumeration type

– N is a standard C++ class. None of the rules have changed.
– R is a managed class of reference type. It lives on the managed heap and is referenced by a handle:

• R^ rh = gcnew R;
• delete rh; [optional: calls destructor which calls Dispose() to release unmanaged resources]
• Reference types may also be declared as local variables. They still live on the managed heap, but their

destructors are called when the thread of execution leaves the local scope.

– V is a managed class of value type. It lives in its scope of declaration.
• Value types must be bit-wise copyable. They have no constructors, destructors, or virtual functions.
• Value types may be boxed to become objects on the managed heap.

– I is a managed interface. You do not declare its methods virtual. You qualify an implementing
class’s methods with override (or new if you want to hide the interface’s method).

– E is a managed enumeration.

 N can hold “values”, handles, and references to managed types.
 N can hold values, handles, and references to value types.
 N can call methods of managed types.
 R can call global functions and members of unmanaged classes without marshaling.
 R can hold a pointer to an unmanaged object, but is responsible for creating it on the C++

heap and eventually destroying it.

From Kate Gregory’s Presentation
see references

Native Managed

Pointer / Handle * ^

Reference & %

Allocate new gcnew

Free delete delete1

Use Native Heap
2

Use Managed Heap

Use Stack

Verifiability * and & never ^ and % always

1 Optional 2 Value types only

Mixing Pointers and Arrays

 Managed classes hold handles to reference types:
– ref class R 2{ … private: String^ rStr; };

 Managed classes can also hold pointers to native types:
– ref class R1 { … private: std::string* pStr; };

 Unmanaged classes can hold managed handles to managed types:
– class N { … private: gcroot<String^> rStr; };

 Using these handles and references they can make calls on each other’s
methods.

 Managed arrays are declared like this:
– Array<String^>^ ssarr = gcnew array<String^>(5);

– ssarr[i] = String::Concat(“Number”, i.ToString()); 0<= i <= 4

 Managed arrays of value types are declared like this:
– array<int>^ strarray = gcnew array<int>(5);

– Siarr[i] = i; 0<=i<=4;

Type Conversions

C++ Type CTS Signed Type CTS Unsigned Type

char Sbyte Byte

short int Int16 UInt16

int, __int32 Int32 UInt32

long int Int32 UInt32

__int64 Int64 UInt64

float Single N/A

double Double N/A

long double Double N/A

bool Boolean N/A

Extensions to Standard C++

 Managed classes may have the qualifiers:
– abstract

– sealed

 A managed class may have a constructor qualified as static, used to
initialize static data members.

 Managed classes may have properties:
– property int Length

{
int get() { return _len; }
void set(int value) { _len = value; }

}

 A managed class may declare a delegate:
– delegate void someFunc(int anArg);

Managed Exceptions

 A C++ exception that has a managed type is a managed
exception.

 Application defined exceptions are expected to derive from
System::Exception.

 Managed exceptions may use a finally clause:
– try { … } catch(myExcept &me) { … } __finally { … }

 The finally clause always executes, whether the catch handler
was invoked or not.

 Only reference types, including boxed value types, can be
thrown.

Code Targets

 An unmanaged C++
program can be
compiled to generate
managed code using
the /clr option.

 You can mix managed
and unmanaged C++
code in same file.

 Managed C++ can call
C# code in a separate
library and vice versa.

Mixing Managed and Unmanaged Code

 You may freely mix unmanaged and managed C++ classes in
the same compilation unit.

– Managed classes may hold pointers to unmanaged objects.

– Unmanaged classes may hold handles to managed objects
wrapped in gcroot:

• #include <vcclr.h>

• Declare: gcroot<System::String^> pStr;

– That helps the garbage collector track the pStr pointer.

– Calls between the managed and unmanaged domains are more
expensive than within either domain.

 Note, all of the above means, that you can use .Net Framework
Class Libraries with unmanaged code, and you can use the C++
Standard Library with managed code.

Using Frameworks in MFC
from Kate Gregory’s Presentation

 Visual C++ 2005 allows you to use new Frameworks libraries in
MFC Applications

 MFC includes many integration points

– MFC views can host Windows Forms controls

– Use your own Windows Forms dialog boxes

– MFC lets you use Windows Forms as CView

– Data exchange and eventing translation handled by MFC

– MFC handles command routing

 MFC applications will be able to take advantage of current and
future libraries directly with ease

Limitations of Managed Classes

 Generics and Templates are now supported.

 Only single inheritance of implementation is allowed.

 Managed classes can not inherit from unmanaged classes and
vice versa. This may be a future addition.

 No copy constructors or assignment operators are allowed.

 Member functions may not have default arguments.

 Friend functions and friend classes are not allowed.

 Const and volatile qualifiers on member functions are currently
not allowed.

Platform Invocation - PInvoke

 Call Win32 API functions like this:

– [DllImport(“kernel32.dll”)]
extern “C” bool Beep(Int32,Int32);

– Where documented signature is:
BOOL Beep(DWORD,DWORD)

– Or, you can call native C++ which then calls the Win32 API

 Can call member functions of an exported class

– See Marshaling.cpp, MarshalingLib.h

Additions to Managed C++ in VS 2005

 Generics

– Syntactically like templates but bind at run time

– No specializations

– Uses constraints to support calling functions on parameter type

 Iterators

– Support for each construct

 Anonymous Methods

– Essentially an inline delegate

 Partial Types, new to C#, were always a part of C++

– Class declarations can be separate from implementation

– Now, can parse declaration into parts, packaged in separate files

End of Presentation

