
Documenting Architecture and Design

Jim Fawcett

Copyright © 1999-2003

CSE687 – Object Oriented Design

Spring 2003

Documenting Architecture and Design 2

Levels of Documentation

 Operational Concept Document
– Overall view of architecture of large, complex system

 Software Specification
– Complete, unambiguous, consise description of a component’s

obligations.

 Design Document
– “As built” description of the means used to design and implement a

component.

 Test Report
– Detailed description of component or system test methods and

results.

 Code documentation:
– Manual page, maintenance page, design notes, prologues,

comments

Documenting Architecture and Design 3

What is Software Architecture?

 “An architecture is the set of significant decisions about the
organization of a software system, the selection of the structural
elements and their interfaces … together with their behavior as
specified in the collaborations among those elements, …”[1]

 “… abstract away some information from the system … and yet
provide enough information to be a basis for analysis, decision
making, and hence risk reduction.”[2]

 “…designing and specifying the overall system structure
emerges as a new kind of problem. Structural issues include
gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and
selection among design alternatives.”[3]

Documenting Architecture and Design 4

References

1. Booch, Rumbaugh, and Jacobson, The UML Modeling Language
User Guide, Addison-Wesley, 1999.

2. Bass, Clements, and Kazman. Software Architecture in Practice,
Addison-Wesley 1997.

3. Mary Shaw and David Garlan. An introduction to software
architecture. In V. Ambriola an G. Tortora, editor, Advances in
Software Engineering and Knowledge Engineering, volume I.
World Scientific Publishing Company, 1993.

Documenting Architecture and Design 5

What is Software Architecture?

 The architecture of a software system captures major features and
design ideas for a software development project.

– Describes relationship of users with the system.

– Describes structure and organizing principles of the system.

• major partitions within the system and their interfaces

• responsibilities of, and resources needed by, each partition

• design concepts: data structures, algorithms, data flows, that help developers
understand and implement their piece of the system.

– Identifies major threads of execution

• A thread is the sequence of activities that result from some system event.
Examples are system startup, response to operator requests, and processing of
errors.

– Identities critical time-lines and risk areas

• A time-line is a time-based budget for critical threads.

• A risk area identifies objectives and requirements that will be difficult to meet under
the current architectural and design concept.

Documenting Architecture and Design 6

Architectural Issues

 Software architecture is concerned with:

– Goals:

• main objectives of the system

– Uses:

• how people and other software will interact with the system

– Tasks:

• activities for system and its major partitions

– Partitions:

• modules and objects that make up the system

– Interactions:

• the relationships, data flows, and assumptions that partitions have about each other

– Events:

• any occurrence that affects system activities

– Views:

• appearance of the system to users and its designers

– Performance:

• Efficient use of computer resources – processor cycles, network bandwidth, memory

Documenting Architecture and Design 7

Uses

 Uses describe the way users and other software components
interact with the system.

– What is the user trying to accomplish?

– What are the required inputs that the user supplies?

– What are the system outputs that the user expects?

– What controls will the user want to affect system operation?

 Uses are often developed as scenarios, called use cases.

– Each scenario describes on or more of the following:

• User roles, e.g., developer, manager, quality assurance, …

• Mode of operation, e.g., data collection, data analysis, data
presentation.

• Responses to specific important events, e.g., initialization, user inputs,
computational errors, system output.

Documenting Architecture and Design 8

Tasks

 Tasks are a high level list of the activities that the system will
need to carry out.

– First developed for the system as a whole.

– Later, allocated to the major system partitions.

 Tasks are usually presented as lists and in activity diagrams.

– Activity diagrams are like flow charts, but at a higher level.

– They describe activities that are important for the system or its
major partitions.

– Activity diagrams show required sequencing and synchronization of
tasks.

– When software is implemented tasks allocated to each module are
described in the modules manual page.

Documenting Architecture and Design 9

Partitions

 Partitions represent the grouping of system activities into logical
and physical entities.

– Data Flow Diagrams (DFDs) represent the partitioning of system
activities into processes, showing the flow of information between
the external environment and each process.

– Module diagrams show the physical packaging of system processing
into files.

– Classes show the logical partitioning of system data and processing
into low-level program constructs.

 Partitions are the second most important part of the architecture
concept, after the definition of its tasks.

– Sequence of development is often: (1) uses, (2) tasks, (3) partitions,
(4) interactions, (5) events, and (6) views.

Documenting Architecture and Design 10

Interactions

 Interactions describe the relationships between system partitions.
They are described by:

– Data flow diagrams:
Used in the early phases of architecture and requirements
development.

– Module diagrams:
Describe static relationships between the system’s physical
partitions.

– Class diagrams:
Describe the static relationships between the system’s logical
components.

– Event trace diagrams:
Show the dynamic relationships between system components.

– Structure charts:
Describe the relationships between the system’s functions.

Documenting Architecture and Design 11

Events

 Events describe specific occurrences to which the system must
respond, or that affect its modes of operation.
– Events are critically important for real-time systems, e.g., systems

that must respond to asynchronous events from the outside
environment.

– For these systems architecture development may revolve around
the definition of critical threads.

• A thread, as defined by the architecture concept, is all the processing
that results from a specific event, e.g., a radar detection, user input,
power on, computational error, etc.

• Many threads are defined, then sorted by importance, relative to the
system requirements. The architecture isn’t complete until processing
is defined that will support system requirements for each of the critical
threads.

– Threads are usually described by event trace diagrams.

– In some non-real-time systems events play only a minor role in
developing the system architecture.

Documenting Architecture and Design 12

Views

 Views are used in two ways:

– Views describe the user interface as it appears to the user.

• Layouts of controls and screens.

• Screen shots showing what the user will see when entering data.

• Screen shots showing what the user will see when observing operation.

• Each of these views is accompanied with text describing how the user
interacts with the controls and screens.

– Views also describe the most important data structures and
algorithms:

• Data structure diagrams are ad hoc diagrams the show how data
elements relate to each other.

• Data structure may be described with xml tree views.

Documenting Architecture and Design 13

Performance

 Level of communication affects performance by orders of magnitude:

– Within a process

– Between local processes on a single machine

– Between machines in a network

– Between networks, e.g., across the internet

 Lazy communication:

– Send information only when needed

– Send only the specific information needed

 Data caching:

– Store information locally so that it need not be requested repeatedly

 Minimize remote connectivity:

– Connections consume threads, CPU cycles, memory

– Make connection time least necessary to complete request, then disconnect.

Documenting Architecture and Design 14

 Design is the process of deciding how to satisfy a program’s
requirements.

 Design has four essential elements:

– client focus
Concerned with how the user will interact with the program.

– organizing principles
The main design ideas on which a program’s implementation is based.

– Structure
The physical way that code is formed for implementation.

– Performance
How efficiently the program uses machine resources to achieve its design
goals.

What is Design?

Documenting Architecture and Design 15

Structure

 Structure
the physical way that code is formed for implementation. The
design issues here are:

– the parts into which the program is divided.

– communication required between parts.

– ownership of system resources and other parts.

– visibility of one part by another.

Documenting Architecture and Design 16

Performance

 Performance - Is determined by:

– algorithms used in implementing requirements

– how often the memory manager is called

– how arguments of functions are passed

– which objects are static

– which objects are made local

– the size of objects and the frequency of their construction and
copying

Documenting Architecture and Design 17

Architecture and Requirements Contents

 Activity Diagram
Used for high level descriptions of program behavior, often associated with
software architecture.

– shows the activities a program carries out

– which activities may be conducted in parallel

– which activities must be synchronized for correct operation

 Module diagram
(variant of structure chart – see below)
One of the main diagrams used to describe software architecture.

– shows calling dependencies between modules

 Architectural Diagram

– Like a module diagram but may show non-module files

 Context diagram
Also a high level description, used in documentation of architecture.

– used to show how a program interacts with its environment

 Data Flow diagram
Used in requirements documents.

– represents processing requirements and the information flows necessary to sustain
them

Documenting Architecture and Design 18

Design Documentation Contents

 Class diagram (OMT diagram)

– shows classes that are used in a program along with their relationships

– sometimes also shows their physical packaging into modules

 Event Trace diagram

– illustrates the timing of important messages (member function invocations)
between objects in the program

 Structure Chart

– shows calling relationships between every function in a module and the
calls into and out of the module

 State Diagram

– shows how program navigates through its states

 Data structure diagram

– illustrates the layout and relationships between important pieces of data in
the program

Documenting Architecture and Design 19

Activity Diagram (Petri Net) Contents

 An Activity diagram shows:

– activities a program carries out

– which activities may be conducted in parallel

– which activities must be synchronized for correct operation

 Each activity is shown by a labeled bubble.

 Start and stop activities are shown by darkened circles.

 Two or more activities which can be conducted in any order or in
parallel are shown starting after a synchronizing bar.

 If two or more activities must all be completed before another
activity begins, the synchronized activities are shown flowing into
a synchronizing bar.

 Activities shown in series must be completed in the order shown.

Documenting Architecture and Design 20

Activity Diagram Contents

1st Activity

2nd Activity

3rd Activity

4th Activity

5th Activity

Last Activity

 stop

 start

AND Synchronization
The 5th activity can not start until

the 2nd and 3rd activities have

completed.

Splitting Synchronization
The 2nd, 3rd, and 4th activities can

start anytime after the 1st activity has

completed

Documenting Architecture and Design 21

Activity Diagram Contents

• The Activity Diagram is used to model high level activities in
programs and systems. It is particularly useful for representing
business systems and other human activities.

• The activity diagram is especially useful for representing
systems that use synchronization. Often the synchronization
points, shown by thick bars, are places where materials or
information is enqueued, waiting for a subsequent activity to
begin.

Documenting Architecture and Design 22

Extended Petri Nets Contents

 Activity diagrams extend the notation used for Petri nets by
explicitly showing decision operations with a diamond symbol
and labeled paths flowing out of the decision operation.

 Activity diagrams which incorporate decision processing are
used in much that same way that flow charts were used (one of
the earliest forms of graphical program documentation).

 They are more powerful than flow charts, however, as they
make explicit the opportunity for parallel processing and the
need for synchronization.

Documenting Architecture and Design 23

Activity Diagram Example Contents

 This Diagram represents work remaining to do on a Project.

collect demo

files

read Petzold

chap 2,3,7,8

read Proj #1

statement

create project with

3 modules

lang

timer.h, timer.cpp

proto2.c

proto2.cpp

report.doc

process.cpp

C++

C

- copy proto2.cpp to timetest.cpp

- add timer.h,.cpp

- create new process module

create project with

2 modules

- copy proto2.cpp to timetest.cpp

- add calls to time functions

- create new process module

add calls to time

functions in timetest

add call to

createProcess in loop

in process module

declare timer

object in timetest

add call to

createProcess in loop

in process module

test and check

Proj #1 statement

modify process

module:

replace createProcess

with function call

test and check

Proj #1 statement

Documenting Architecture and Design 24

Context Diagram Contents

 A context diagram shows how the processing you will build interacts
with its environment.

– Each rectangle represents some source of information used by your program or
some sink of information provided by your program. Your program does not
provide these sources and sinks.

– The central oval represents all the processing you are obligated to develop.

– Each line represents information required for your processing to succeed
(inputs) or information your processing will generate (outputs).

 The information flows shown on the context diagram must match
exactly the inputs and outputs on your top level Data Flow Diagram
(DFD), described next.

Documenting Architecture and Design 25

Context Diagram Contents

PAGE
command

line

file system

standard error

standard

output

filenames,

commands
paged text

fil
e
n

a
m

e

fil
e
 h

a
n

d
le

e
rr

o
r

m
e
ss

Documenting Architecture and Design 26

Data Flow Diagram Contents

 A data flow diagram represents processing requirements of a
program and the information flows necessary to sustain them.

– All processing represented by the context diagram is decomposed into
a set of a few (perhaps three or four) process bubbles which are
labeled and numbered.

– The information necessary to sustain each process and generated by
each process are shown as input and output data flows.

– Inputs from the environment and outputs to the environment are
show exactly as they appear in the context diagram.

– When the inputs and outputs exactly match the context diagram we
say that the data flow diagram is balanced.

– If each of the processes represents approximately the same amount
of requirements detail we say that the diagram is properly leveled.

Documenting Architecture and Design 27

Data Flow Diagram Contents

information1

Process 1

in
fo

rm
a
ti
o

n
3

information2

Process 2

information5
Process 4

in
fo

rm
a
tio

n
4

Process 3

in
fo

rm
a
tio

n
7 inform

ation6

Process 5

input

Documenting Architecture and Design 28

Data Flow Diagram Contents

• Data Flow Diagrams (DFDs) are used during the analysis of
requirements for complex systems. Each bubble represents a
specific process which has been allocated tasks and
requirements, so that all of the program’s obligations are
partitioned among the processes shown on the top level DFD.

• Each data flow represents information necessary to sustain a
process or generated by a process.

• Note that Data Flow Diagrams are not officially part of the UML.

Documenting Architecture and Design 29

An Example Data Flow Diagram Contents

This diagram represents processing in the DUPLICATES
program.

Command Line

Processing

1

Directory Search

2

Data Collection

3

Display

4

path spec

starting

path

filenam
e,

pathnam
e

duplicates

FileS
tore

D
ata S

tructure
erro

rs

erro
rs

currDirectoryName

Documenting Architecture and Design 30

Lower Level Data Flow Diagrams Contents

 We usually divide the processes in a data flow diagram into
logical operations which may not all need the same amount
of detail to describe their processing requirements. When
this is the case, we decompose the more complex processes
into lower level data flow diagrams.
– If a process is decomposed into lower level sub-processes this is shown on a

lower level data flow diagram.

– Each process in the lower level data flow diagram must be numbered
showing its parent’s number and a unique number for each of its own
processes, e.g., 3.4.

– The lower level diagram must balance with its parent. That is, each of its
input flows and output flows must match those of its parent.

– If necessary a lower level data flow diagram may be further decomposed
into still lower level diagrams. This is not uncommon for complex programs.

Documenting Architecture and Design 31

Duplicates Program
Lower Level Data Flow Diagram Contents

Searching

Display

4.1

Duplicates

Display

4.2

Logging

Display

4.3

FileStore

Data Structure

currpathname

duplicates

duplicates log

duplicates

paths

Documenting Architecture and Design 32

Class Diagrams Contents

 A class diagram shows the classes that are used in a program along
with all relevant relationships between classes.

– A class diagram sometimes also shows the physical packaging of
classes into modules.

– There are two especially important relationships between classes:

• Aggregation shows an ownership or “part-of” relationship. This relationship
is denoted by a line with a diamond attached to the owning class and
terminating on the owned class. The UML requires the aggregation
diamond to be filled with black if the owning class creates and destroys the
owned object.

• Inheritance shows a specialization or “is-a” relationship between classes.
This relationship is denoted by a line with a triangle pointing toward the
base class. The line terminates on one or more derived classes which
specialize the behaviors of the base class. However, each derived class is
required to handle all of the messages the base class responses to and are
therefore also considered to be (specialized) base class objects.

Documenting Architecture and Design 33

Classes and Objects Contents

Class : a set of objects of one specific type

vec

Operation:

 vec(int len);

 ~vec();

 vec& operator(double, const vec &);

 vec operator(const vec&, const vec&);

 double& operator[](int n);

 vec& operator=(const vec&);

Attribute:

 double *array;

 int length;

 static double shared;

vec

myVec

object of class

class symbol class symbol with details

Documenting Architecture and Design 34

Objects Contents

Object: an element of some class

Each class represents a specific collection of data attributes of
one or more types (its state) and a collection of functions
(behaviors) which modify or disclose the state of an object of
the class.

Each class has, by default, a unique state, independent of any
other object of the class. However, a class may declare that
one or more data members must be shared by all objects of the
class.

Documenting Architecture and Design 35

Generic Classes Contents

 It is frequently convenient to define a class in terms of a
generic parameter of unspecified type. We call these generic
classes and represent them with the symbols:

vec<T>

Operation:

 vec(int len);

 ~vec();

 vec& operator(T, const vec &);

 vec operator(const vec&, const vec&);

 T& operator[](int n);

 vec& operator=(const vec&);

Attribute:

 T *array;

 int length;

vec<T>

myVec<double>

object of class

class symbol class symbol with details

Documenting Architecture and Design 36

Template Class Declaration Contents

template <class T> class vec {

public:

vec(int size=0); // constructor

vec(const vec<T>& v); // copy constructor

~vec(void); // destructor

vec<T>& operator=(const vec<T>&); // assignment

T& operator[](int n); // indexing

T operator[](int n) const; // indexing

vec<T> operator*(T &t); // scalar multiplication

friend vec<T> operator*(T &t, const vec<T>& v);

// scalar multiplication

vec<T> operator+(const vec<T>&); // vector addition

vec<T> operator-(const vec<T>&); // vector subtraction

vec<T> operator*(const vec<T>&); // vector multiplication

T operator,(const vec<T>&); // inner product

int size(); // show size

void write(ostream&, int, int); // formatted write to output

friend ostream& operator<<(ostream&, const vec<T>&);

// output stream inserter

void read(istream&); // formatted read from in

friend istream& operator>>(istream&, vec<T>&);

// input stream extractor

private:

char *_vName; // pointer to name allocated on heap

int _arSize; // vector dimension

T *_array; // pointer to array allocated on heap

};

Documenting Architecture and Design 37

An association is a relationship linking two or more classes or
objects.

Associations Contents

class 1 class 2

class 4class 3

class 5 class 6

Documenting Architecture and Design 38

Relationships Contents

 The hollow ball indicates a multiplicity of zero or one for class 1

 The solid ball indicates a multiplicity of zero or more (many) for
class 2.

 Absence of a ball indicates a multiplicity of one.

 There is one-to-one relationship between classes 3 and 4 and
one to many relationship between classes 5 and 6.

Documenting Architecture and Design 39

Link Attributes Contents

 A model may have attributes which clearly belong to the association
relationship rather than to one of the classes in the association. In this
case the association is given those attributes, and is denoted as shown
below.

Here, class 1 and class 2 have a one to many relationship in which the
relationship has attributes denoted by an association attributes list.

class 1 class 2

association

attributes

association

name

Documenting Architecture and Design 40

Association Examples Contents

The diagram below captures the relationship between a student and her
department.

Here, the program of study is meaningless without the relationship between the
student and her department.

department

transcript

program of

study

SSN,

name,

...

student

Documenting Architecture and Design 41

Association Example Contents

 This second diagram illustrates the relationship between a team leader
and his team members.

skills, assignment, role

project person

team member

2-5

team leader

Documenting Architecture and Design 42

Using Relationship Contents

 Using is an association that models one class using the behavior of another to carry

out its own activities.

 The using relationship is implemented when a member function of the User class is

passed an object of the Usee class or when it creates a local instance of the Usee

class.

 In a typical design there are many using relationships – too many to show

conveniently. In this case we show only those that are critical to the design.

User Usee

Documenting Architecture and Design 43

Using Example Contents

class User {

public:

User(const std::string &name);

void show(Usee &usee);

private:

std::string _name;

};

Void User::show(Usee &usee1) {

Usee usee2("Jake");

std::cout << "\n I am " << _name << ", and use two objects.";

usee1.showUsee();

usee2.showUsee();

}

User Usee

Documenting Architecture and Design 44

Aggregation Contents

 Aggregations are special associations which model a “part-of” or
“contained” semantic relationship.

In this diagram class 1 contains classes 2 and 3. Classes 2 and 3 are
part-of class 1.

class 1

class 2 class 3

Documenting Architecture and Design 45

Aggregation and Composition Contents

Aggregations are “part-of” or containment relationships. Here, class 2 is part of class 1.
A stronger form of aggregation is the composition relationship. This is an aggregation in
which the part-of represents an exclusive ownership. An owned object is created when
the owner is created and is destroyed when its owner is destroyed.

Composition is denoted by a dark fill in the diamond end of the aggregation symbol.
When C++ programmers use the term aggregation they mean this stronger
compositional form since aggregation is usually implemented by making the owned class
a data member of the owning class. In C++ this creates the stronger compositional
relationship.

class 1

class 3

class 2

class 4

Documenting Architecture and Design 46

Composition Example Contents

class part {

public:

part(const std::string &name);

void showPart();

private:

std::string _name;

};

class whole {

public:

whole(const std::string &name);

void show();

private:

std::string _name;

part a;

part b;

};

whole part

stringstring

Documenting Architecture and Design 47

Aggregation Example Contents

The diagram below illustrates the aggregation relationship inherent in a
team.

The behaviors and attributes of the team are the sum of all the behaviors
and attributes of the team leader and all the team members. In this sense
aggregation represents an “and” semantic relationship.

project team

team leader team member

Documenting Architecture and Design 48

Inheritance Contents

Inheritance models an “is-a” semantic relationship. Here the classes 2 and 3 inherit
from class 1. We say that classes 2 and 3 are derived from base class 1.

That means that class 2 “is-a” class 1 and the same must be true for class 2. The
“is-a” relationship is always a specialization. That is, both classes 2 and 3 must have
all attributes and behaviors of class 1, but may also extend the attributes and extend
and modify the behaviors of class 1.

class 1

class 2 class 3

Documenting Architecture and Design 49

Inheritance Example Contents

class Base {

public:

Base(const std::string &name);

virtual ~Base() { }

virtual void show();

private:

std::string _name;

};

class Derived : public Base {

public:

Derived(const std::string &name);

virtual void show();

private:

std::string _name;

};

Base

Derived

Documenting Architecture and Design 50

Inheritance Example Contents

The inheritance diagram below represents an architecture for a
graphics editor. The display list refers to graphics objects, which
because of the “is-a” relationship, can be any of the derived objects.

graphics

object

line circle polygon

display

list

Documenting Architecture and Design 51

Inheritance Example Contents

The base class graphicsObject provides a protocol for
clients like the display list to use, e.g., draw(), erase(),
move(), ... Clients do not need to know any of the details that
distinguish one of the derived class objects from another.

In C++, the protocol functions are qualified as virtual. This
means that a derived class may override any base class
definition to provide class specific semantics for this function.
Furthermore, this means that the list manager client can be
ignorant of specific types of objects addressed, simply calling
the base protocol on any one of them.

Documenting Architecture and Design 52

Importance of Polymorphism Contents

 When a base class provides a protocol by defining one or more virtual
functions that are overridden by derived classes, clients can use the
base protocol to interact with any of the derived classes and need not
know the details that distinguish one derived class from another. This
is called polymorphism.

 Polymorphism lets us minimize coupling between clients and the
objects they use.

 Polymorphism also allows us to extend a library to satisfy the needs of
an application, provided that the library designer has defined a base
protocol and allowed us to derive from that base. The next example
illustrates this. A directory navigation object uses a base processing
class that applications can derive from to insert their own processing
into the computa-tional stream.

Documenting Architecture and Design 53

Class Diagram Example
Logical and Physical

Structures of the

CATALOG program

NAV Module

CATALOG Module

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet smaller

fileInfo

catalog::main()

Attribute:

 virtual void dirsProc(const string &dir);

 virtual void fileProc(const fileInfo &fi);

defProc

wildcards

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a dir,

extract file information

define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing

STL containers

store a set of directories and their associated files

Note that

catalog::main()

and navig

actually refer to

a userProc

object through

defProc

pointers

Documenting Architecture and Design 54

Typical Output from CATALOG

Documenting Architecture and Design 55

Multiple Inheritance Contents

A derived class may have more than one base class. In this
case we say that the design structure uses multiple inheritance.

base class 1 base class 2

derived class

Documenting Architecture and Design 56

Multiple Inheritance Contents

The derived “is-a” base 1 and “is-a” base 2. Multiple
inheritance is appropriate when the two base classes are
orthogonal, e.g., have no common attributes or behaviors, and
the derived class is logically the union of the two base classes.

The next page shows an example of multiple inheritance taken
from the C++ Standard Library iostream module. The classes
iostream, ifstream, and ofstream all use multiple inheritance to
provide their behaviors.

Documenting Architecture and Design 57

IOSTREAM
Hierarchy

ios

istream ostream

istream_with_assign

istrstream

ifstream

ostream_with_assign

ostrstream

ofstream

iostream

fstream strstream stdiostream

streambuf

stdiobuf

filebuf

strstreambuf

Contents

Documenting Architecture and Design 58

Event Trace Diagram Contents

 An Event Trace diagram illustrates the timing of important messages (member

function invocations) between objects in a program.

– Each object is shown by a vertical bar

– Message traffic is shown by labeled horizontal lines flowing toward the object on which

a method was invoked.

– Time progresses downward in the diagram, but note that the diagram does not

attempt to show iteration loops or calling options. If one of two calls may be made

depending on some condition they are either both shown or neither is shown.

– Iterations are sometimes hinted by preceding a method name with a * symbol

indicating that that method will be invoked multiple times in succession.

 These diagrams usually show the major events, but don’t try to capture all little

details - there may be hundreds of messages flowing, but perhaps only a few are

important enough to show.

Documenting Architecture and Design 59

Event Trace Diagram Contents

object 1 object 2 object 3 object 4

new

new

new

msg1(...)

msg2(...)

msg3(...)

* msg4(...)

msg5(...)

msg6(...)

self

delegation

message

 sequence of

 messages

thick bar shows

life-time of

object

Documenting Architecture and Design 60

Event Trace Diagram Example Contents

This example is from the Duplicates program.
dupsExec

main()
navig dupsProc fileStor

display

dupsProc

fileStor

startPath

navig

start

walk

dirsProc*

fileProc*

add

walk*

fileMap

time

Documenting Architecture and Design 61

Module Diagram Contents

 Module diagrams show function calling dependencies between modules
in a program.

– Each module is represented by a labeled rectangle. Calling modules are shown
above the modules they call.

– A program should be decomposed into a single executive module which directs
the activities of the program and one or more server modules that provide
processing necessary to implement the program’s requirements.

– If we use a relatively large number of cohesive small server modules it is quite
likely that we will be able to reuse some of the lower level modules in other
programs we develop.

– An executive module usually is composed of a single file containing manual page,
maintenance page, and implementation.

– A server module is composed of two files

• header file with manual and maintenance pages

• implementation file with function bodies and test stub

Documenting Architecture and Design 62

Duplicates Program Module Diagram Contents

DupsExec

Nav

FileStore

Documenting Architecture and Design 63

Architectural Diagram Contents

 For some programs we may wish to provide additional details in
the module diagram.

– If we use code generators like the Microsoft Founctation Classes
(MFC) and resource editors (Visual C++ IDE) some files will be
generated which do not fit nicely in the standard modular structure,
e.g., resource headers and scripts. In this case we may wish to
show these additional files on an extended Module Diagram that
we shall call an Architectural Diagram.

– This diagram is a module diagram to which we add the generated
files and may annotate with brief statements about processing
required of each component.

Documenting Architecture and Design 64

Architectural
Diagram

timeProcess module

timerExec module

timer module

timerExec.cpp

timeProcess.h

timeProcess.cpp timer.h

timer.cpp

search module

search.cpp

sp
a
w

n

p
ro

ce
ss

project1.txt
read

file

- create main display window

- collect user inputs

- display results

- create child process

 using parent window

- declare and use timer object

- define timer class

- read text file

- implement search

Documenting Architecture and Design 65

Structure Chart Contents

 The structure chart shows calling relationships between every function in a module

and calls made into and out of the module.

– Callers are always shown above callees.

– Lines without arrow heads are drawn from the caller to the callee.

– All data flowing between the invoking and invoked function are shown with labeled

arrows.

– These arrows are called data couples and are usually labeled with the name shown in

the argument list of the called function.

– If a control signal is passed between functions it is shown with a hollow ball. Note

however, that what one function may consider data another function may consider

control, e.g., used to make a decision. If in doubt about how to draw a couple show it

as data.

– Recursive calls or calls which would result in many crossing lines are shown with

lettered circles instead.

Often one Structure Chart is made for each module in a program. The gray boxes are

calls to, or by, functions outside the module.

Documenting Architecture and Design 66

Structure Chart Contents

function 1

function 2 function 3 function 4 function 5

function 7 function 9function 8function 6

data5 data6
data4

data1

data2 data3

Documenting Architecture and Design 67

An Example Structure Chart Contents

navExec::main

navig::navig

dupsProc::dupsProc

dupsProc::startPath

navig::use

navig::start

dupsProc::display

navig::walk

dupsProc::fileProcdupsProc::dirsProc

dupsProc::makeLower dupsProc::makeLower fileStore::add

fileStore::fileStore

fileStore::fileMap

pd
p

di
r fd

fil
e,

pa
th

file

di
r

ar
gv

[1
]

Documenting Architecture and Design 68

State Diagram Contents

 A State diagram shows the dynamic behavior of a finite state
machine. Programs which incorporate language grammar
processing or controller activities are often represented by state
diagrams.

– A state diagram contains a set of labeled bubbles, one for each
state of the machine.

– Labeled lines are drawn between states showing transitions from
state to state. The labels indicate the event that triggered a
transition from the source state to the destination state.

– start and terminal states are shown with filled circles.

 In a sense, state diagrams are activity diagrams where the
transition conditions have been emphasized and no
synchronization or parallel activities are shown.

Documenting Architecture and Design 69

State Diagram Contents

1st state

2nd state 3rd state

4th state

event h

5th state

Last state

event causing a

state transition

 stop

 start

event a

event b

event c

event d
event e event g

event f

Documenting Architecture and Design 70

State Transition Diagrams Contents

State transition diagrams are usually used to represent low level
design details, particularly when representing the processing of
a grammar.

I have used them to represent the operation of a tokenizer and
to show how code analysis grammar works.

Documenting Architecture and Design 71

State Diagram Example Contents

 This diagram represents processing required to analyze C or
C++ source code, looking for function definitions, class or struct
declarations, typedefs, and global data declarations.

scanning

text

checking

type

check for

function

EOF

display function

and count lines

display

 stop

 start

found '{'

found '('

identifier is not

 a key

scopeLevel = 0

found struct

or class

display

complete

checking

type

display

typedef

display

complete

check for

global

scopeLevel = 0

no typedef

found

declaritor

no

declaritor

identifer

is a key
scopeLevel > 0

no typedef

found ';'

Documenting Architecture and Design 72

Data Structure Diagrams Contents

 Data structure diagrams have no special syntax.

– Their structure is defined to show the layout and relationships
between data items in a program.

– There are diagrams used for data base design called entity-
relationship diagrams which do have a syntax formalism. We shall
not be concerned with them in this course.

 Data Structure diagrams are often used to document the design
of modules and classes which manage complex data for a
program.

Documenting Architecture and Design 73

Duplicates Program
Data Structure Diagram Contents

typedef map< string, list<pathSet::iterator> > fileMap typedef set< string> pathSet

path1

iterator

list
file name

path2

path3

Note: Only one copy of each file name is stored in the fileMap

and only one copy of each path is stored in the pathSet.

Documenting Architecture and Design 74

Software Repository Example

 Background:

– It is common for software systems to require millions of lines of code for
their implementation.

– The implications of that size and complexity are:

• Large teams are required in order to complete development in reasonable time.

• Maintaining conceptual integrity and managing development are extraordinarily
difficult.

 Goals:

– Support massive reuse of existing software so that a large fraction of the
total is reused without modification. Issues are:

• Efficient search – find a few components out of a collection of many thousands.

• Quality assurance and maintenance – support process of maintaining a
massive collection of certified components.

• Distribution – make components available to all developers anywhere in an
organization.

Documenting Architecture and Design 75

Desktop-Library Middleware

Core Library
Server

Project Library
Server

User's
Desktop

 P
roject-S

atellite M
iddlew

are

S
ynch

ron
ize

 databases

update f ile cache from project library

send files for check-in, request builds
return status and analysis results

D
es

kt
op

-L
ib

ra
ry

 M
id

dl
ew

ar
e

U
pd

at
e fi

le
 c
ac

he
 fr

om
 c

or
e

lib
ra

ry

re
qu

es
t b

ui
ld
s

or
 p

ac
ka

gi
ng

Software Repository Structure - Project and Core Databases

Reduce server load by
partitioning working

database across projects

Documenting Architecture and Design 76

Analysis of Goals

 Assumptions:
– Quality assurance is primary function of repository server.

• Reuse implies no change in documentation, code, and test apparatus
for the reused components.

• Very tight quality control is needed for this to be practical.

 Implications:
– Usability implies that it should be easy to read and extract

components.

– Need for quality guarantees implies that it should be difficult to
enter new components and to change existing components.

– Thus support of analysis tools and role based administration is
needed.

– Support for transition from newly developed component to certified
component is needed. A “holding tank” metaphor is appropriate
here.

Documenting Architecture and Design 77

Analysis of Scale

 Assumptions:
– organization of 2000 developers

– working on five concurrent projects

– average software size of 5 million lines of code.

– ten existing systems fielded and currently operational

– Each system has a common core of half its total software

– Average file size is 400 lines of code.

– Half of the developers are working directly on code at any time.

– Each developer uses average of five files concurrently.

 Implications:
– 15 total systems * 2.5 million unique lines of code + 2.5 million

lines of common code 40,000,000 lines of code

– 100,000 files in repository.

– 5000 files being used throughout the work day.

Documenting Architecture and Design 78

Analysis of Load

 Assumptions:
– One server holding repository software resource.

– 1000 user’s login between 9:30 AM and 11:00 AM, browsing for average of ½
hour each.

 Implications:
– 500 user hours of service in 1½ hours 333 simultaneous users

– This is an untenable load

 Consequences:
– Partition into system distributed between server and client desktops.

– Clients browse on their own desktops, make file requests only when needed.

– Cache files on desktop to minimize server traffic.

– Use message based communication to minimize length of connection to server.

 Design strategy:
– Make distributed file management transparent to user.

Documenting Architecture and Design 79

Analysis of Function

 Need to find a small number of files out of many thousands
implies need for:

– Hierarchical database structure

– Associations maintained between files, modules, programs, systems

– Powerful search techniques

– Support for traversing entire hierarchy on desktop, even though only
a small part of the repository’s files are cached locally

 Desire to use repository structure for projects, as well as storage
for corporate resources implies need for:

– Status reporting at every level

– Simple, but effective configuration management

Documenting Architecture and Design 80

Summary of Conclusions

Need:

 Hold at least 100,000 components in repository

 Distributed file management system with caching on desktop

 Message passing communication

 Hierarchical associations between components

 Powerful search techniques

 Role-based administration

 Support for quality assurance tools

 Status reporting for all components

 Support configuration management

Documenting Architecture and Design 81

Software Repository - Services and Processes

Services are repository processes that the user interacts with

Services
browse, search, addition/deletion

build, packaging, analysis
and status

core processes
association, updating, communication

and indexing

Documenting Architecture and Design 82

Organizing Principle – Component Structure

 Organize Repository database into:
– File store: holds exactly one copy of each file

• Distinct versions are considered to be different files, e.g., token.cpp.3
and token.cpp.4 are both stored in file store.

– Module Store, Program Store, System Store
• Versioned in the same manner as files.

– Units of reuse are components:
• Module is a list of files

• Program is a list of modules and (documentation and test) files

• System is a list of programs and files

– Components are represented in the Repository by indexes.
• An index is a file containing:

– Path of each lower level component and file

– Set of keywords

– Status information

– Brief statement of function

Documenting Architecture and Design 83

system component program component module component

FileStoresystemStore programStore moduleStore

 name : test1.sys

test1.prg

test2.prg

 name : test1.prg

test1.mod

test2.mod

test3.mod

 name : test1.mod

test1.h

test1.cpp

test1.mak

test1.doc

test1.h

client directory

test1.cpp

test1.doc

test1.mak

test1.mod

test2.mod

test3.mod

test4.mod

test1.prg

test2.prg

test3.prg

test1.sys

test2.sys

test3.sys

Components - Defined by Presistent Repository Association Index Structure

summary info text block

status enumeration

test1.nts

test4.prg

test5.mod test1.nts

test2.h

keywords

summary info text block

status enumeration

keywords

summary info text block

status enumeration

keywords

Documenting Architecture and Design 84

Organizing Principle – Search Indexes

 Create module, program, and system indexes to capture the
results of searches.

– Example: Search for thread-safe queue

• Returns program index pointing to modules that have queue and
threading attributes

• Returns system index pointing to all programs that use these thread-
safe queues

– Example: Program up-date

• Given some program, search for latest versions of all its lower level
components, e.g., modules and files.

• Return as next version of the program.

• Obviously, this type of up-date applies to components at any level.

Documenting Architecture and Design 85

Organizing Principle – File Management

 Operation of Distributed File Management System

– Every night server sends all its indexes to each desktop.

– Each index contains keywords, association paths, status
information, and a brief text summary of component.

– Thus client can browse through entire repository structure without
making frequent requests of server.

– Only when client clicks on file link and file is not in local cache will
server receive a file request.

– Client cache is purged only when running low on disk space. Uses
least recently used purge algorithm.

Documenting Architecture and Design 86

Working Set Size

 Estimate of working set:

– Number of modules = number of files / 4 = 25,000

• 2 source code files

• One test driver

• One documentation file

– Number of programs = number of modules / 5 = 5000

– Number of systems
= 5 current projects + 10 legacy projects + 4 experimental prototypes
= 19 systems

– Number of indexes = 25,000 + 5000 + 19 = 30,019 indexes

– Size of index set = 30,000 * 1 KByte each = 30 MB of index data

 Could greatly reduce this traffic by sending only new indexes each
night

– Occasionally synchronize by sending complete set.

Documenting Architecture and Design 87

security service

file update process

browse service search service

packaging service

code analysis

service
status service

communication

process
association process

manage index

process

addition/deletion

service

- extract file from repository to file cache

 on desktop if not already there

- add or remove component or file from

 repository database

- extract components to some destination

- add new system,

 program, or module

- build search indexes

- attach or extract status

 information from components

- run an external tool

 on every file in some

 component

- extract all files described by

 some manifest to a named

 directory

build service

- display all selected components

- display file text

- display status information for

 selected components

- extract component

 and build it

find all components

and files that match:

- a set of keywords,

- a time interval, or

- a name fragment

- add/delete components

 or files by name

- find all components and files

 associated with a higher level

 component

- send a file or message between

 repository and desktop

- authorize an action

 based on user's role

Software Repository - Functional Partitions and Dependencies

Services are repository

processes that the user

interacts with directly.

Documenting Architecture and Design 88

Software Repository - Client/Server Structure

client sends requests

server sends back files and confirmations
using communication middlew are

Client Activities:
 - manage file and index cache

 on desktop
 - ask server for f iles and indexes

 only w hen cache is out-of-date
 - brow se through indexes

 and files
 - search through indexes by:

 - date intervals
 - keyw ords

 - name fragments
 - status and text fragments

 - build execution images
 - package for deliveray

 - collect status

Server Activities:
 - check client authorization for

 requested activity
 - serve files to clients on demand

 - add/delete database files
 - collect status information (off hours)

 - package for delivery
 - synchronize database contents w ith

 other servers

Repository
client

Repository
server

Required service time per request
implies that most of the repository

activities must be conducted on
the user's desktop.

The server should be used to

serve files and indexes and
manage it's internal database

Documenting Architecture and Design 89

Software Repository -

Client Processing

Activity Diagram

wait for user

request

ok

browse request
search or status

request
build request package request

add/delete

request

analysis

request

check

authorization
no

yes

display

error message
no

in cache

no

post update

request

display item

post refresh index

request

search local

indexes
wait for reply

wait for reply
forward request

 to server

wait for

confirmation or

denial of service

yes

display results

quit
wait for pending

results
yes

in cache

no

post update

request

wait for reply

build image

yes

in cache

no

post update

request

wait for reply

build package

yes

user request

Documenting Architecture and Design 90

Organizing Principle – Server Structure

 Organize Repository into a hierarchy of servers and desktops.

– Primary server holds core repository of reusable components.

– Project servers are cloned from main repository.

• Use different rules to manage contents.

– Easier to add new components and modify existing components.

– Client desktops are created as subsets of main repository, with
contents determined by owner’s job functions.

– Only local browsing is allowed on any server.

• Only administrators can browse the primary and project servers.

• Clients only browser the desktop cache.

– Index distribution supports simulated browsing of the entire
repository at client desktops.

• Distributed file management satisfies file opening requests by first
searching the local cache, then downloading from a server if needed.

Documenting Architecture and Design 91

Desktop-Library Middleware

Core Library
Server

Project Library
Server

User's
Desktop

 P
roject-S

atellite M
iddlew

are

S
ynch

ron
ize

 databases

update f ile cache from project library

send files for check-in, request builds
return status and analysis results

D
es

kt
op

-L
ib

ra
ry

 M
id

dl
ew

ar
e

U
pd

at
e
 fi
le

 c
ac

he
 fr

om
 c

or
e

lib
ra

ry

re
qu

es
t b

ui
ld
s

or
 p

ac
ka

gi
n
g

Software Repository Structure - Project and Core Databases

Reduce server load by
partitioning working

database across projects

Documenting Architecture and Design 92

Organizing Principle – Configuration Management

 The proposed repository association index structure can support a very
flexible configuration management policy:
– Every file (source code, document, index) is given a version number,

mydoc.doc.3.
– Indexes refer to a file by name, extension, and version.
– No file appears more than once in the repository, but all versions are stored.

• Ancient versions may be retired to an offline archive once no supported system
refers to them.

– Components, e.g., all those objects represented by an index file, are
versioned by versioning their indexes.

– A component can be updated to a new version by updating any one or all of
its links to the latest versions of the named files. This automatically
increments its version.

– Since indexes are small files, we can afford to keep all versions under the
repository control.

– Special indexes can be used to point to all the latest changes in the
repository, allowing a very flexible updating policy. A team will update to
new software, developed by another team, only when they are ready.

Documenting Architecture and Design 93

Communication System

 Communications between desktop and servers are based on
message-passing.

– More flexible than Remote Procedure Calls.

– Client makes request for service:

• File request

• Status request

• Update index request

– Message is queued on server, serviced based on availability of
server CPU cycles and priority – file requests have top priority.

– Server pushes results to client.

– Desktop enqueues server results. Queue handler at desktop gets
high priority so server does not block.

Documenting Architecture and Design 94

Client Server

MessageMgr

sockets

MessageMgr

sockets
bidirectional

byte stream

asynchronous messages

and data transfers

send and receive

messages and data

client/server model

MessageMgr Model

sockets model

- develops interface for clients

 and servers

- implements protocols for

 message and data transfer

- uses sockets interface to

 effect transfers

- queues messages at receiver

- handles socket with one thread,

 parses messages and handles

 queue with another

- server listens, spawns a

 thread for each client

thread-safe

queues

thread-safe

queues

Project #3 - Messaging System Architecture

Documenting Architecture and Design 95

messaging

client

messaging

server

send_file, send_file, ... , send_file, done, disconnect

send_file, file_data, file_data, ... , file_data, done, disconnect

Software Repository - Message Protocol

Organizing Principle:

Server reflects back all of the client's request messages

and done message

Documenting Architecture and Design 96

Software Repository - File Serving Activity Diagram

database integrity

check

initialize

communication

process

connect to new

client

accept request

disconnect client

OK

check

authorization

disconnectyes

client connection

request

process request

send back request

message

send back reply

messages

listen for

connection

request

incomming

message

no

yes

no

shutdownno

yesprocess request
queues

empty

y
e
s

no

Documenting Architecture and Design 97

basicSoc Module

msgThrd Module

mtqueue Module

msgClnt Module

Win32 API

Win32Utils
Module

mtqueue Module

timer Module

mtqueue Module

startServer

receiver

thread

w orker

thread

socketServer serverWorker

sender

thread

sender

processFileMessages

(convert f iles into messages)
WinSock API

msgServ Module

server

thread

main

client

thread

main

w orker

thread

processMsg

(convert messages into f iles)

s
o
ck

e
t:
 -

 s
e
n
d

_
fil

e
,
d
o
n
e
,

sh
u
tD

o
w

n
 m

sg
s s

o
ck

e
t: - se

n
d

_
file

, file
_
d
a
ta

, d
o
n
e
 m

s
g
s

mtqueue<msg>
in

mtqueue<msg>

in

mtqueue<msg>

out

file name

Software Repository
Messaging Service for File Transfer

clientWorker

.\sData

.\cData

Documenting Architecture and Design 98

Assessment of Risk

 Risk Areas:

– Message-passing communication: issues are complexity and
performance.

– Association process, capturing relationships between files, modules,
programs, and systems: issues are performance and robustness.

– Load handling capacity of core repository server: can a single
server support demands of a large community of developers?

– Security: how do we make the repository easily accessible to all our
developers, including those at remote sites, while keeping our
competitors and malicious hackers from compromising our
proprietary software resource?

Documenting Architecture and Design 99

system component program component module component

FileStoresystemStore programStore moduleStore

 name : test1.sys

test1.prg

test2.prg

 name : test1.prg

test1.mod

test2.mod

test3.mod

 name : test1.mod

test1.h

test1.cpp

test1.mak

test1.doc

test1.h

client directory

test1.cpp

test1.doc

test1.mak

test1.mod

test2.mod

test3.mod

test4.mod

test1.prg

test2.prg

test3.prg

test1.sys

test2.sys

test3.sys

Components - Defined by Presistent Repository Association Index Structure

summary info text block

status enumeration

test1.nts

test4.prg

test5.mod test1.nts

test2.h

keywords

summary info text block

status enumeration

keywords

summary info text block

status enumeration

keywords

Risk Abatement

 Association prototype
demonstrates that file-based
association will support
adequate performance.
Should investigate other
approaches.

 Message passing prototype
demonstrates that multi-
threaded socket servers
support asynchronous file
server with required
performance.

basicSoc Module

msgThrd Module

mtqueue Module

msgClnt Module

Win32 API

Win32Utils
Module

mtqueue Module

timer Module

mtqueue Module

startServer

receiver

thread

w orker

thread

socketServer serverWorker

sender

thread

sender

processFileMessages

(convert f iles into messages)
WinSock API

msgServ Module

server

thread

main

client

thread

main

w orker

thread

processMsg

(convert messages into f iles)

so
ck

et
: -

 s
en

d
_f

ile
, d

on
e,

 s
hu

tD
ow

n
m

sg
s socket: - send

_file, file_data
, done m

sgs

mtqueue<msg>
in

mtqueue<msg>

in

mtqueue<msg>

out

file name

Software Repository
Messaging Service for File Transfer

clientWorker

.\sData

.\cData

Documenting Architecture and Design 100

Risk Abatement

 Repository server performance:

– Distributed file cache management and index updating service will
easily provide adequate performance within a connected network.

– Should the repository service be provided through web servers,
openly accessible world-wide, it will be necessary to provide mirror
web hosts. Since the repository contents do not change frequently,
this should be easy to manage.

 Repository security:

– The management plan for the repository calls for anonymous
reading, but only administrator write access, conventional security
measures should be adequate, e.g.:

• Firewall controlling the type of access

• Mirroring contents in multiple sites, including backup sites with no
public access.

Documenting Architecture and Design 101

Risk Abatement

 Protecting proprietary value:

– Providing strong, conventional network security and allowing
outside access only through virtual private networks provide
protection against naïve attackers from the outside.

– Providing read access only through proprietary reader software,
different from browser-based access (http and ftp) will add an
additional layer of security.

– There is one gaping security hole in this architecture: the inside
job. This system will do nothing to prevent an employee or
contractor with repository access from walking out with a box of
CDs burned with the repository contents.

– Two approaches come to mind:

• Encrypt all contents and decode only on proprietary software keyed to
run only on one specific machine, like the Microsoft Activation scheme.

• Don’t treat the repository contents as proprietary.

