
Design Guidelines

Jim Fawcett

Spring 2015

Excerpts from and addendums to:

“Enough Rope to Shoot Yourself in the Foot”,

Allen Holub, McGraw-Hill, 1995

Chapter 3 - Design Guidelines 1

CSE687 – Object Oriented Design Class Notes

Prime Directive

• No surprises
• A component, e.g., a package or class should act the way it looks like it

should act.

• The interface should describe what it does in a way that any competent
developer can understand.

• Maximize Cohesion
• Things that are grouped together should be related in function and be

focused on a single objective.

• Minimize Coupling
• When a component changes, everything it’s coupled to may need to change.

• Try to couple only to interface, not implementation.

• Try to minimize “assumption” coupling and “need to know” coupling as well
as data coupling.

Chapter 3 - Design Guidelines 2

Decide in Haste
Repent at Leisure

Chapter 3 - Design Guidelines 3

Kiss Principle

• Keep It Small and Simple
• Don’t solve problems that don’t yet exist.

• Solve the specific problem, not the general case
• but don’t make it needlessly inflexible either

• Keep the door open for extension through composition and inheritance

• Use polymorphism to encapsulate “need to know” in specific derived classes,
allowing clients to be blissfully ignorant, knowing only the base class protocol.

• Design function code so that it:
• fits on a single page

• has cyclomatic complexity well below 10

• Keep a package small enough that its structure chart fits on a single page

Chapter 3 - Design Guidelines 4

Separate Interface from Implementation

• Use encapsulation to force clients to program to your interface, not
your implementation.

• Hide any complex design details inside your implementation

• Make your interface simple and as small as is practical.

• Don’t return non-constant pointers in public class interfaces:
• makes clients need to know your implementation

• Creational functions are an exception to this rule

• For classes, use private or protected keywords:
• qualify all data as private or protected

• qualify as private or protected any methods that are complex or dangerous
for client use

• Declare and implement global functions and classes that are not
intended for client use in the implementation file (don’t declare in
header).

Chapter 3 - Design Guidelines 5

Decompose into Smaller Tasks

• Break a complex operation into smaller simpler pieces.
• if you can’t say it well in English (Hindi, Mandarin, …)

you can’t say it well in C++

• The act of writing out a description of what a program does, and what each
component does, is a critical step in the thinking process, even if the result is
just one or two pages.

• If you can’t write it clearly then you probably haven’t fully thought out either
the problem or its solution.

• When you’re done, you have a specification - the only reasonable basis for
testing.

• Design is a decomposition process in the application domain.

• Implementation is a re-composition process in the solution domain.

Chapter 3 - Design Guidelines 6

Small is Beautiful

• Large tasks are unmanageable unless they are broken down into
small cohesive subtasks.
• We emphasize use of packages to compose a large program.

• Sometimes large tasks are best accomplished by a collection of small
modular programs that use a common representation:
• executing tasks can be combined in flexible ways

• use the right tool for each specific job

• use parts of the collection in ways the designer never thought of

• new tools are easily added as the tasks and goals evolve
• UNIX tool set

• control system computer aided design and analysis

• new uses often are found if the tools are flexible and easy to use

Chapter 3 - Design Guidelines 7

User Interface Should be Transparent

• Don’t let easy to learn translate into ackward to use.

• Interfaces shouldn't look like computers, they should look like
solutions to a task.

• The fastest editor I ever used was the RT11 TECO editor.
• It was a line editor, not based on a GUI

• It was brutally hard to learn because it used control keys for all commands

• Once you learned it, NOTHING interrupted your typing. You didn’t have to
stop and grab a mouse every third sentence.

• After a few months of use it became invisible. There was nothing conscious
between you and the words flowing out on the screen.

• Measure productivity in the number of keystrokes it takes to
complete a task.

Chapter 3 - Design Guidelines 8

Read Code

• Read a lot of code.
• You learn by seeing how others write code. Look at as many samples of good

code as you can.

• Look critically at your own code.

• Read several of the better trade journals, e.g., C++ report, C/C++ User’s
Journal, IEEE Computer Magazine, IEEE Software Magazine.

• Write a lot of code.
• When you’re starting a big job, write small prototypes to try out your ideas

and be prepared to throw them away or rebuild them before launching the
final construction.

• Use an editor’s red pencil on your code. Strike out unnecessary code,
simplify, reword, repartition, until you’re reasonably satisfied.

• Be prepared to throw the first one away.

Chapter 3 - Design Guidelines 9

Write for Maintenance

• The maintenance programmer is you!

• Any software that is useful is written once, but read many times.
• a lot less effort is expended over the lifetime of the program if the designer

takes the time to document, design, and implement carefully

• You will spend far more time reading your code than writing it.
• as you build a package, the first functions built are re-read many times as you

build later functions that depend on them.

• careful unit test of a package will probably take more time than its initial
construction but save a lot of debugging time downstream.

• Others will read your code to understand when, where, and how to
use it.

Chapter 3 - Design Guidelines 10

Performance is very Important, But...

• Less important than correctness:
• no point in generating errors very quickly

• Less important than robustness:
• no one will trust your code if it crashes often

• Less important than maintainability:
• as soon as a program is put into service, if it’s useful, users want more

functionality.

• adding new features to unmaintainable code takes us back to the first two
points

• Less important than reusability:
• we won’t be in business very long if we’re not as productive as our

competitors.

• in a labor intensive business like software development, that means reuse

Chapter 3 - Design Guidelines 11

Formatting and Documentation

• Software should be self-describing:
• Unlike most other engineering disciplines, software has the ability, if well

written, to capture, store, and disclose on demand, the technology used for
its construction.

• if you use specialized algorithms or technology place citations to references
so others can understand how your code works.

• Uncommented code has no value:
• uncommented code is unmaintainable

• manual and maintenance information should accompany every package

• most functions should have a (brief) prologue - perhaps only a single line -
and comments only to describe any subtle code.

Chapter 3 - Design Guidelines 12

Documentation Style

• Let code describe that which code describes best.

• Reduce clutter:
• make comments as brief as possible

• don’t put descriptive comments in class declarations, save them for
member function definitions

• don’t put inline functions inside class declarations.
• put very simple functions (one or two lines) in the header file just after their class

declaration and use the inline keyword

• Put all the rest in implementation file unless they are templatized. Templatized
functions you put in the header file without inline keyword.

Chapter 3 - Design Guidelines 13

Diagrams
• Use diagrams in requirements and design documents:

• data flow diagrams to describe the basic abstractions flows

• class diagrams to describe the static logical structure

• event trace and activity diagrams to describe dynamic behavior

• structure charts to show calling relationships
• always provide one per module if there is significant function layering

• data structure diagrams show the organization of your data

• Words are much less effective without diagrams.

• A diagram may be worth a thousand words, but only if it is
accompanied by a paragraph or two of discussion.

Chapter 3 - Design Guidelines 14

Comments
• Don’t comment the obvious.

• Do put comments where they are needed:
• Once per package:

• Manual Page
- Briefly state purpose, operation, and public interface.

• Maintenance Page
- Briefly list maintenance history and state build process including file
dependencies

• Once per file:
• provide prologue: state name of file, brief phrase describing contents, state language,

platform, application, and author

• Once per function:
• state action

• discuss inputs and outputs only if type and format are not obvious

• put brief comments in code only if semantics are not obvious

Chapter 3 - Design Guidelines 15

White Space is Important

• Show scope level with indentation.

• Set editor to replace tabs with spaces
• you want tabs to be three or four spaces

• every printer on earth will make them eight spaces unless it is programmed
to do otherwise

• Use page breaks between functions that would otherwise be split
across pages:
• if your editor does not support page breaks, e.g., VC++, you can

create one from the command line by copying a ^L from the key-board to a
file:

copy con >ff
^L^Z

Then load the ff file into the editor, copy its contents, and paste it, inside a
comment, wherever you need it.

Chapter 3 - Design Guidelines 16

Names are Important

• Well chosen names make code nearly self documenting.
• names should be common words, describing what the file, class, function,

argument, or variable does.

• use one character names only for indices declared, defined, and used locally

• use names just long enough to be descriptive.

• use a consistent style of separation, e.g.:
severalWordName vs. several_word_name

• use aliases and typedefs sparingly
• if typedefs are exported as part of the public interface, then describe them in the user

documentation included in the module.

• avoid routinely redefining standard types

Chapter 3 - Design Guidelines 17

Data Types are Important

• Don’t use global data except for constants that should be universally
known throughout a package.
• global names shared between components destroy their reusability

• non-constant global data makes code maintenance very difficult

• Don’t return non-constant pointers as part of a public interface
• they give access to memory, not objects

• clients have to understand your design to use them properly

• It is acceptable to return a reference to a well-designed object:
• the reference provides access to object only through its interface

• if you do, the object type referred to should be described in the
documentation of your user interface

• Minimize use of static data and try not to use global data at all.
• both cause problems in recursive and multi-threaded code

Chapter 3 - Design Guidelines 18

Minimize Dependencies

• Don’t make unnecessary dependencies
• only include header files that are needed in the file where included

• program to abstract interfaces wherever that makes sense
• that minimizes compile-time dependencies and need-to-know

• never declare using namespace statements in header files
• that declares the using statement in any client’s code that includes your header file

• try very hard not to require preconditions for clients to use your code
• when you have to, make sure the conditions are documented as part of your user

interface

• silent assumptions by one component about the behavior of another component cause
a lot of grief during integration and maintenance of your code

Chapter 3 - Design Guidelines 19

Handling Errors
• Test routines should not be interactive.

• a non-interactive test routine can be exhaustive

• users providing inputs will not be nearly as complete

• Every package should have a test stub to implement construction
tests.

• An error message should help a user fix the error.

• Don’t display error messages if your code can recover.

• It is often very useful to provide error trace functions that are easily
adapted to different environments:
• use synchronization of output streams in multi-threaded code

• use message boxes in GUI applications

• use streams which can be standard I/O or logging files

• Always flush the output stream if more than one thread share the
same stream.

Chapter 3 - Design Guidelines 20

Handling Pointers

• Always initialize a pointer close to its declaration:
• avoids use of a pointer you assumed was initialized but wasn’t

• If a function you use has an argument that points to a result
you must know:
• has the function allocated storage or do you?

• is the storage heap memory? If so you must deallocate.

• if you supply the content for that output, is the allocated storage large
enough?

• strcat, strcpy, strdup are very common sources of pointer errors

• Don’t pass around non-const pointers:
• that forces clients to know your design:

• is the pointer initialized?

• what is its valid range?

• does the client call free or delete on that pointer?

Chapter 3 - Design Guidelines 21

Handling Pointers Again

• Be careful incrementing pointers into an array. Incrementing and
assignment statements are valid only from the first element to one
past the last element:

int array[SIZE];
int *p = array+SIZE; // ok, can go one past end
while(--p >= array) // may not work, language

// doesn’t support going below
// base address

Chapter 3 - Design Guidelines 22

Architecting and Designing in C++

• Use diagrams to think about classes and class relationships before
you write code:
• UML class diagrams show class relationships

• structure charts show complex method layering

• event trace diagrams document evolution of program messages and events

• Use data flow diagrams to work out partitioning strategies.

• Use diagrams to think about data structures.

Chapter 3 - Design Guidelines 23

Class Structure

• Choose composition over derivation for reuse.

• Use inheritance and polymorphism to define a protocol language:
• clients of the class hierarchy need only know the protocol, not the derived

class details

• use protocol language to build reusable components that need not know any
application details

• use protocol to provide a receptacle for any of a set of components which
may be extended at some later time

• Do not provide public access to private data.

• Don’t put function bodies in class declarations:
• put inline definitions and template definitions after class declaration

Chapter 3 - Design Guidelines 24

Avoiding Pitfalls

• Return by value objects that don’t exist before a function call.

• Pass and return by reference when you can.

• Prefer const references as function inputs.

• Constructors with arguments should always use initialization
sequences.
• Derived class constructors should always explicitly initialize their base classes

and member objects.
• Derived class copy constructors must use an initialization sequence to call

their base copy constructor.

• Assignment in a derived class should use the base’ assignment
operation to get the base part assigned.

• Don’t call virtual functions in a constructor for the same class.

• Make destructors virtual for any class that may serve as a base.

Chapter 3 - Design Guidelines 25

Overloading Operators

• Define:
• operator+, operator-, operator*, and operator/

in terms of :
• operator+=, operator-=, operator*=, and operator/=

• Remember the binary operator model:
• operators as class members: x@y x.operator@(y)

• operators as global functions: x@Y operator(x,y)

Chapter 3 - Design Guidelines 26

Use the Whole Language

• Understand all the major features of the language:
• classes

• composition

• inheritance

• polymorphism

• templates

• exceptions

• standard library

• Study Design Patterns to see smart, tested ways of using OOD.
• “Design Patterns”, Gamma et. al., Addison-Wesley, 1995

• Then use the appropriate tool for the job.
• not every design needs all of the language or sophisticated patterns, but

every feature and pattern has problems that they solve better than other
know ways.

Chapter 3 - Design Guidelines 27

Look at Other Languages

• Other OOD languages:
• C# and Java: designed to be used in a distributed environment
• Eiffel: provides direct support for Design-by-Contract

• Scripting languages:
• JavaScript, VBScript:

• languages embeddable in html, making active web pages

• Perl, Tcl, Python, Ruby:
• designed to be integration languages

• Functional languages:
• ml, lisp, mathematica:

• have been used for prototyping and knowledge representation

• Declarative languages:
• Prolog, Leda

• used for expert systems, theorem proving

Chapter 3 - Design Guidelines 28

SW Development is a Service Industry

• Ask people what they want, then do what they tell you.

• What’s the point of building a program no one wants?

• Designers need to talk with the end users.
• Big Government job?

• There is always on-site installation and customer maintenance.

• Commercial shrink-wrap product?
• talk to users of the previous version

• Embedded software?
• talk to the production engineers and installers on the factory floor

• Make an end-user part of the development team.

• If you’re designing development tools, use them yourself, while you
are developing them.

Chapter 3 - Design Guidelines 29

End of Presentation

Chapter 3 - Design Guidelines 30

