
Chapter 10 - Design Notes 1

Chapter 10 – Design Notes

CSE687 – Object Oriented Design Class Notes

Jim Fawcett
copyright (c) 1997 – 2004

Chapter 10 - Design Notes 2

Table of Contents

• What is Design?

– Client Focus

– Organizing Principles

– Program Structure

• Principles of Awful Interface Design

• Modules

• Design Notes for Modules

• Object Oriented Design Strategies

• Classes

• Good Neighbor Policy

• Good Housekeeping Policy

• Design Notes for Classes

Chapter 10 - Design Notes 3

• Design is the process of deciding how to satisfy a

program’s requirements.

• Design has four essential elements:

– client focus

concerned with how the user will interact with the

program.

– organizing principles

the main design ideas on which a program’s

implementation is based.

– Structure

the physical way that code is formed for implementa-

tion. The design issues here are:
– the parts into which the program is divided.

– communication required between parts.

– ownership of system resources and other parts.

– visibility of one part by another.

– Performance

determined by:
– algorithms used in implementing requirements

– how often the memory manager is called

– how arguments of functions are passed

– which objects are static

– which objects are made local

– the size of objects and the frequency of their construction and copying

What is Design?

Chapter 10 - Design Notes 4

• A designer’s first responsibility is to the user of the program

and that should be his first and primary concern during the

initial stages of design.

• Important questions are:

– how can I minimize the amount of information the user has to

supply the program?

– how can I make the program flexible enough to allow the user

to fully satisfy his needs?

– how can I inform the user about inputs the program needs?

– how can I inform the user about progress of the computation?

– how can I help the user understand what the program is doing

for him?

– how can I help the user interpret program’s results?

• Note that the user may be a human being or it may be

another software component. The same questions are

appropriate for either case.

Client Focus

Chapter 10 - Design Notes 5

Principles of Awful Interface Design

• Design: wait for user input without prompting

• Principle: user will figure it out eventually

• Design: prompt for input without indicating how

to supply it

• Principle: everyone needs a little frustration

• Design: change state of the system without

warning

• Principle: users love surprises

• Design: when an error occurs tell the user an error

occurred

• Principle: don’t bother the user with details,

especially if useful

• Design: provide data instead of information. Dump

raw numbers on the output without labels

or interpretation

• Principle: do what is easy for the designer, not the

user

Chapter 10 - Design Notes 6

Principles of Awful Interface Design

• Design: don’t format output. Put data out without
regard to making it legible or attractive

• Principle: do what is easy for the designer, not the user

• Design: make the user’s sequence of inputs and
corresponding outputs as unorganized and chaotic as
possible

• Principle: users love puzzles

• Design: don’t give the user any control over how the program’s
computation proceeds. Especially don’t provide any
means of correcting input or stopping processing of
garbage

• Principle: your design is perfect. Why should the user have any
control

• Design: give the user choices but make sure that it is not clear
what happens when a selection is made

• Principle: I know how it works. Why can’t the user figure it out?

End of Principles

Chapter 10 - Design Notes 7

• Organizing principles are those design ideas, data

structures, operation sequences, and partitions that

make the design appear to be simple.

• Organizing principles often are discovered by thinking

about:

– key program events

– special data structures

– the smallest set of information necessary to complete a

task

– designing a language to represent the program’s critical

processing

• Developing organizing principles is the most creative

part of design.

• You know you have a good set of organizing principles

when you are sure that you can successfully implement

the program even though you have not yet solved all its

problems.

• The architecture of your program is simply its

organizing principles and partitioning.

Organizing Principles

Chapter 10 - Design Notes 8

• Structure is determined by the modules you use, the

classes which populate the modules, and relationships

between classes.

• One module should be an executive and all others servers.

– each server should do one thing well

– servers may use services of other modules but should usually

hide that from the client

– modules can be identified by listing all the activities of your

program, taking each activity to be a module candidate.

• Classes are also servers.

– each class should provide a single type of service to its

clients.

– classes are found in the problem domain as things a user

sees and interacts with, e.g., screens, dates, directories,

graphs, ...

– classes are also found in the solution domain as things the

designer uses to implement programs, e.g., lists, maps,

strings, ...

Program Structure

Chapter 10 - Design Notes 9

• How do I develop a program’s structure?

– List its principle activities and the information needed to sustain

each activity. Data flow diagrams and activity charts are good

for this.

– Each process in a dataflow diagram is a candidate to become a

module or class component

– Think about what information each component needs to

generate or transform and pass on to its fellows. The

information may become data members and transformations

may become member functions.

– Invent data structures in which to collect information, store it,

and disclose it to clients. Each data structure is a candidate for

a class.

– look vigorously for organizing principles -- those bright ideas

which simplify, make elegant, or make powerful the processes

you implement

– capture your structure with OMT diagrams and struc-ture

charts

Inventing a Structure

Chapter 10 - Design Notes 10

• How do I establish effective communication?

– Do as little as possible by partitioning processes into sets

which don’t have to exchange much data.

– Make transferred data volume as small as possible by

condensing before transmission.

– Pass data references rather than data itself where that

makes sense.

– Use the command line, files, and user console for data

exchange where each are most suitable:

– command line for setting the mode or format of computations with a
few words.

– files as sources and sinks of large complex bodies of information.

– use run-time queries for data and control that is unique each time a
program is run. Minimize the amount of data requested of the user at
run-time.

– Describe data transactions by some logical model, then

create classes to represent the transmitter and/or receiver.

Communication

Chapter 10 - Design Notes 11

• How do I establish effective ownership?

– A component which needs information should create it if possible,

own it, and dispose of it when done.

– If only one class needs the services of another, think about making

the needy class the owner of an object of the serving class. That

way other components in the program don’t have to be aware of

messages sent between needy and server.

– If a class you are designing needs the services of an object of an

other class and the object already exists for some reason (perhaps

only some other component has the information necessary to build

it) then think about making a reference to the object a private mem-

ber of your class. That way it’s clear your class does not own the

object and your class does not suffer the performance penalty of

copying another object.

– When objects are created, try very hard to have the creator also

dispose of the objects. Otherwise owner-ship responsibilities are

shared between the creator and disposer. That makes the design

more complex and much harder to make correct.

– Containers should be designed to own their objects, e.g., they use

value semantics. If you need reference semantics you simply make

the type of the contained object a pointer to the object.

Ownership

Chapter 10 - Design Notes 12

• How do I control visibility?

– One of the most important design principles is to minimize

the need to know. One component should have to know

as little as possible about another. That way when a

change has to be made in a component it is likely not to

affect other components, except possibly its owner.

– To hide a component we simply make another component

own it and keep it private.

– Another aspect of need-to-know is implicit assumptions we

make about the way another component behaves. This

assumption coupling causes a lot of problems when we

integrate software developed separately in time or place.

It also makes debugging much more difficult.

– We should strive to minimize the number of assumptions

our clients have to make about our components by making

their public interfaces simple and logical.

– We should make explicit, on the manual page and in

function prologues, the assumptions we are forced to

make in the design of our classes. That way our clients

don’t get ugly surprises when they try to use our

components.

Visibility

Chapter 10 - Design Notes 13

• Every program is composed entirely of modules

• Every server module is composed of

– header file defining public interface. It contains:

– compilation directives preventing multiple compilation

– manual page supporting reuse by disclosing platform, author,
purpose, and operations

– maintenance page supporting reuse by disclosing build process
and bug fixes

– declarations announcing module services

– implementation file defining implementation. It

contains:

– prologue identifying author and matching header

– function and data definitions

– test stub supporting incremental development

• Modules should not put non-constant data or pointers

in public interface.

• All functions which support the module but are not

needed by clients should not be in the public inter-

face. Make them private or protected members of a

class or type them as static and don’t declare them in

header.

• Modules should be cohesive, e.g., focused on a single

activity or providing a single service.

Modules

Chapter 10 - Design Notes 14

• Encapsulation

– If global variables or functions are private to a module, declare them

static. Only use const global data.

– Use reference types to give read and write access to internals. Don’t

return pointers.

• Initialization Efficiency

– static arrays are useful for local initialized arrays (a keyword table

should be local, but only initial’d once, so make it static)

• Constantness

– if function does not change arg declare arg const

– If member function does not change object state declare it const

(put const after parenthesis and before open brace).

• Errors

– avoid returning references which may become invalid. return

reference only if object existed before function call

– when handling errors in functions that return references, if error

return reference to static dummy value or throw exception.

– avoid comparing signed with unsigned values; if you compare signed

with unsigned the compiler will treat the signed value as unsigned

possibly causing suprises.

– avoid recursive functions which are likely to be called many times -

possible stack overflow

– Declare const pointers correctly, e.g.:

const int *pint = &i declares non-const ptr to const int

int* const pint = &i declares const ptr to non-const int

const int* const pint = &i declares const ptr to const int

Design Notes for Modules

Chapter 10 - Design Notes 15

• What is an Object?

– An encapsulated software component that supports a

simple logical model through the names and behaviors of

its public interface members. An object announces its

logical model and public interface details on its manual

page.

– A component which is self sufficient. It requires no

support from clients to provide for its operation other

than to send it messages and receive its messages.

• It allocates whatever system resources it needs when it is

created and releases them when it is destroyed.

• An object makes as few assumptions about its external

environment as possible, and when assumptions are

necessary, it either follows a traditional pattern or notifies

clients in its manual page of these special assumptions.

• If it modifies its external environment during its operations

it restores the environment as soon as those operations

conclude.

• It handles its own errors and, when appropriate, notifies its

external environment about its error status.

– An object is often an instance of a type, that is, a data

structure and a set of allowable operations for that data.

What is an Object?

Chapter 10 - Design Notes 16

• What is object oriented design?

– Almost all effective design approaches begin by partitioning a

program’s requirements into modules, each of which focuses on

a single activity.

– Object oriented design further partitions each module into a set

of interacting objects which carry out their activities by sending

each other messages.

– Object oriented design partitions need-to-know through the use

of class hierarchies. A base class establishes a protocol language

for all clients to use. Derived classes implement the protocol in

ways tailored to each derived type. The client stays blissfully

ignorant of the details which distinguish one derived type from

another.

– Clients use the protocol through base class pointers or references

which are set to one or another of the derived class objects. The

polymorphic action of dynamic binding allows each object to

determine the way it responds to a client message passed

through a reference or pointer to itself.

– Often a client does not need to know which object is being used.

Clients view all objects as base class objects.

– Protocol classes, command objects, and finite state machines are

all examples of partitioning need to know through the use of

class hierarchies.

Object Oriented Design

Chapter 10 - Design Notes 17

Object Oriented Design Strategies

• All OO designs use one or more of the following three

strategies:

– Encapsulate processing in one or more classes, carefully

separating into simple, logical, public interfaces and private or

protected implementations. This division and encapsulation

tends to make each class relatively independent of other

processing, simplifying design, implementation, and debugging.

– Extend existing classes using inheritance. Use base classes to

represent a complete but small and simple logical model, e.g.,

vector, string, … Use inheritance to specialize base class

behaviors. The resulting derived classes just modify base class

behavior by overriding its virtual member functions or add to its

behavior by adding new member functions in their public

interfaces.

– Loosely couple client code to server classes with polymorphic

relationships. Polymorphism is achieved by defining a language

for clients to use in a base class, then supplying clients with

derived class objects which support the language in ways unique

to each object. The client can often be unaware of which type

of derived object it interacts with since it uses only the base

class protocol. Each object is responsible for treating the

protocol in ways appropriate for its type. This is a very effective

way to limit client code’s need to know processing details which

distinguish one type of derived object from another.

Chapter 10 - Design Notes 18

• When designing programs remember that you do not have

permanent exclusive rights to:

– memory

– disk space

– screen formats

– I/O channel formats

– peripherals

– public names

– files

– database locks

– operating system semaphores

– communication lines

– environment variables

• Release system resources as soon as you can. Don’t use more than

you need.

• Assign memory and files dynamically when you need them and

release as soon as you are done.

• If you change iostream formats save the original formats and

restore quickly. Do the same for screen formats and environment

variables.

• Use namespaces, classes, and structures to reduce the number of

names you place in the public domain.

Good Neighbor Policy

Chapter 10 - Design Notes 19

• Software components should be self sufficient:

• Do:

– Manage components resources within component

• Memory

• Mutexes and critical sections

• Database locks

– Handle component errors

• Validate inputs

• Catch exceptions

– Provide simple default decisions

• Common input values

• Wildcard expansion

• Path handling

• Don’t:

– Specify explicit pathnames

– Share resource management with users

– Abort processing

Good Housekeeping Policy

Chapter 10 - Design Notes 20

References:

– Effective C++, Scott Meyers, Addison-Wesley, 1992

• Special member functions:

– compiler will generate public copy ctor, assignment operator,

destructor, and address-of operators (const and non-const)

– if you don’t declare any ctors the compiler will generate a default (void)
ctor

– if this is a derived class and the base had a destructor the compiler will
generator a destructor

all of the above are generated only if needed by code

– explicitly disallow use of implicitly generated member functions you

don't want by declaring them private

– always define a copy constructor, assignment operator, and

destructor for classes which allocate system resources to objects

– assignment operator for a derived class should call assignment for

its base class to assign the base part

– the =, (), [], and -> operators must be member functions

• Constantness:

– if member function does not change state of object, declare

function const

– declare method arguments as constant references whenever you

can

• Static members:

– static member data is shared by all objects

– static member functions are independent of objects, can access

only static or global data, and are qualified by class name

Design Notes for Classes

Chapter 10 - Design Notes 21

• Encapsulation: classes manage their own data:

– avoid data members in public interface

– avoid returning handles to internal data from const member

functions

– member functions returning references give read and write access to

member data.

– avoid non-const member functions that return pointers or references

to members less accessible than themselves

• Composition:

– initialize bases and data members with explicit calls to constructors

in an initialization sequence for each constructor you write.

– don’t use array declarations in classes. Instead, use pointers to

arrays on the heap. It’s then easy to write resize() functions to

make your objects expandable and the objects are smaller so

occupy less stack.

• Frequent Errors:

– never return a reference to a local object or a dereferenced pointer

initialized by new within the function

– use same form in corresponding calls to new and delete

– don’t check return value of new – be prepared for an exception

• Type coercion:

– write promotion constructors for all types your class needs to

convert from, but try to write cast operators only for primitive types

and library types

– a compiler ambiguity can occur if your write a promotion constructor

x(Y&) and a cast of Y to X in Y

– when ambiguity does occur you can resolve by explicitly calling a

conversion

– explicit keyword forces a promotion constructor to be call explicitly.

Design Notes for Classes

Chapter 10 - Design Notes 22

• Efficiency:

– pass and return objects by reference instead of by value

where it makes sense to do so

• Initialization:

– prefer initialization to assignment in constructors:

– const and reference members must be intialized.

– construction proceeds in two phases:

– initialization of data members in the order of their declaration in
the class

– execution of the body of the constructor called

– if you don’t initialize an element its default constructor is called, then you
have to assign to it

– if you use an initialization for that element only the copy constructor is
called

– list non-static members in an initialization list in the order in

which they are declared

– members are initialized in the order they are declared regardless of the
order specified in an initialization list

– to avoid surprises use the same order

– static members are intialized once, before main() entry.

They must be defined globally in implementation file.

• Design alternatives:

– choose between overloading and default parameters

– functions can be grouped into an all static class

– return value of overloaded operator need not be a class

object

Design Notes for Classes

Chapter 10 - Design Notes 23

• Have operator= return a reference to *this.

• Assign to all data members in operator=(…).

– default assignment operator performs member-wise assignment

on all data members

– there is no way to selectively overide the default assignments -

either accept the default or take over assignments to all members

– adding a new data member usually means that both the copy ctor

and assignment operator need to be updated

– since assignment operator is not inherited, a derived class

assignment must take care of both base and derived elements -

do that as follows:

class A { ... }; class B:public A { ... }

B& B::operator=(const B& b) {

if (this == &b) return *this;

((A&)*this) = b; // call operator= on A part

... now assign B data elements from b

return *this;

}

You may replace the cast (A&)*this with the operator form:

A::operator=(b)if you wish.

• Check for assignment to self in operator=, as shown above.

Assignment

Chapter 10 - Design Notes 24

• Member pointers:

– an ordinary pointer can be used to access a member of one

specific object.

– member pointers can be used to access a member of any instance

of a given class

– to dereference a member pointer you have to specify which

object you want, e.g.:

struct X { int a, b, c; };

X x, y;

int X::*ptr = &X::a;

int u = x.*ptr; // access to x.a

int v = y.*ptr; // access to y.a

– to point to a member function:

class X { public: int mf(); ... };

int (X::*fptr)() = &X::mf;

X x;

X *y = &x;

(x.*fptr)(); // x.mf() called by object x

(y->*fptr)(); // x.mf() called through

// pointer to x

– a callback to a member function can be implemented using

member pointers as above, using the technique discussed in the

call back note

Member Pointers

Chapter 10 - Design Notes 25

• Semantic models:

– make sure public inheritance models “is-a”

– model “like-a” by factoring out a common base class

– model “has-a” or “is-implemented by” through
composition or, if you have to, with private inheritance

• Accessibility:

– you can selectively allow access when deriving privately

– you can not selectively remove access when deriving
publically

– constructors, the destructor, the assignment and
address-of operators are not inherited but defaults are
supplied by the compiler (may not be what you want)

– declaring a constructor with arguments hides the
compiler generated default => derived classes must
define default constructors

– copy constructor is not hidden when you declare other
constructors

• Errors that affect polymorphism:

– never redefine an inherited nonvirtual function

– Don’t overload virtual functions.

– Don’t use default parameters with virtual functions.

– Don’t attempt to overload base class members in a
derived class.

– avoid casts down an inheritance hierarchy

– make destructors virtual in base classes

Inheritance

Chapter 10 - Design Notes 26

Inheritance (continued)

• Abstract classes:

– a pure virtual function can be defined

– define body just like any other member function

– To inherit in a derived class just provide the
overriding declaration but provide no
implementation.

– can be called by member functions or member
functions of a derived class to do common
processing

Chapter 10 - Design Notes 27

Data members of a class you design are either:

• Built-in types:

need no special treatment.

• Objects of another class:

Your class owns these members and is responsible for their

construction and destruction. Your constructors should

initialize these with an initialization sequence if they need

construction with arguments.

• Pointers:

Your class owns the objects pointed to and is responsible for

constructing and deleting them on the heap. If you need to

refer to an object you don’t own try not to use pointers. Use

references instead.

• References:

Your class does not own the objects referred to. You must

initialize your member references using an initialization

sequence naming existing objects.

Using references for data members you don’t own does two

things for you. It avoids the overhead associated with

copying or constructing the object and it makes it very clear

to someone that has to maintain your code (maybe you in

three months) that the class does not own the object.

Data Members

Chapter 10 - Design Notes 28

• Place one class or a few logically related small classes in a single

module.

• Each class has a public interface defined by its members in the

public section of the class declaration.

• Each class has a private implementation defined by the class’s

private or protected sections.

• Don’t put non-const data or pointers in the class’s public interface.

Put them in the its private implementation.

• Don’t declare arrays in a class. Use pointers to memory allocated

on the heap. This is much more flexible since the class can resize

a dynamic array if needed. This also avoids possible stack

overflows due to need for large stack frames to hold arrays.

• Always check for allocation success, when using new, by catching

allocation exceptions. Another, less used, alternative is to use the

function set_new_handler which makes new call an error handler if

the allocation fails.

• If a class has any pointers as data members it should provide a

copy constructor. assignment operator, and destructor. The

compiler generated copy and assignment do only shallow copies

and assignments of pointers. Compiler generated destructors do

only member-wise destruction, which does nothing for pointers.

• If you don’t think your class semantics should support copying or

assignment you can make those members private so clients can’t

get access.

Classes Summary

Chapter 10 - Design Notes 29

• Don’t include *.cpp files. That makes the compiler

handle more code at one time which, if the program is

large, may cause compilation failure. Also that forces

the included file to be recompiled even if it has not

changed.

• Don’t use array declarations in class declarations. Use

pointers to arrays on the heap.

– Declaring arrays make the object bigger than necessary.

This may cause stack overflow.

– Using pointers to heap allocations is more flexible since

the size of the array can be changed at run time by

reallocating and copying the contents.

Comments

Chapter 10 - Design Notes 30

End of Presentation

