
Appendix I – Elements of C and C++ page 1

Elements of C and C++

Jim Fawcett

Summer 2017

CSE687 - Object Oriented Design Class Notes

Appendix I – Elements of C and C++ page 2

Contents

• C++ Goals

• C Language Elements

• C Language Summary

• C++ Keywords

• C++ Operators

• The ANSI Standard C Library

• ANSI C++ Library

• C/C++ Compilation Model

• C/C++ Computational Model

• C/C++ Memory Model

• Elements of the C++ Language

• Pass by Value and by Reference

• C++ Language at a Glance

• Differences between C and C++

Appendix I – Elements of C and C++ page 3

C++ Goals Contents

• “The language thus provided general mechanisms for
organizing programs, rather than support for specific
application areas. This was what made C with Classes -
and later, C++ - a general-purpose language rather than
a C variant with extensions to support specialized applic-
ations.”

• “C with Classes was explicitly designed to allow better
organization of programs; “computation” was consider-
ed a problem solved by C. I was very concerned that
improved program structure was not achieved at the
expense of run-time overhead compared to C.”

• “I strongly felt then, as I still do, that there is no one
right way of writing every program, and a language
designer has no business trying to force programmers to
use a particular style. The language designer does, on
the other hand, have an obligation to encourage and
support a variety of styles and practices that have
proven effective and to provide language features and
tools to help programmers avoid the well-known traps
and pitfalls.”

Bjarne Stroustrup, “The Design and Evolution of C++”

[underlines are mine]

Appendix I – Elements of C and C++ page 4

Why Use a C Core? Contents

• “C is clearly not the cleanest language ever designed nor
the easiest to use so why do so many people use it?

– C is flexible: It is possible to apply C to most every
applica-tion area and to use most every programming
technique with C. The language has no inherent limitations
that preclude particular kinds of programs from being
written.

– C is efficient: The semantics of C are “low level”; that is ,
the fundamental concepts of C mirror the fundamental
concepts of a traditional computer. Consequently, it is
relatively easy for a compiler and/or programmer to
efficiently utilize hard-ware resources for C programs.

– C is available: Given a computer, whether the tiniest micro
or the largest super-computer, chances are that there is an
acceptable quality C compiler available and that the C com-
piler supports an acceptably complete and standard C lang-
uage and library. Libraries and support tools are also avail-
able, so that a programmer rarely needs to design a new
system from scratch.

– C is portable: A C program is not automatically portable
from one machine (and operating system) to another, nor is
such a port necesarily easy to do. It is, however, usually
possible and the level of difficulty is such that porting even
major pieces of software with inherent machine
dependencies is typically technically and econonmically
feasible.

Compared with these first-order advantages, the second-
order drawbacks like the curious C declarator syntax and
the lack of safety of some language constructs become
less important.”

Bjarne Stroustrup, “The Design and Evolution of C++”

Appendix I – Elements of C and C++ page 5

C Language Elements Contents

• Kernighan and Ritchie [1988] start this way:

– C provides a variety of data types

• characters, integers, and floating point numbers of several

sizes

• derived data types created with pointers, arrays, structures,

and unions.

– Expressions are formed from operators and
operands

– A very rich set of operators make for concise and
expressive constructions.

– Any expression can be a statement - simply append
a semicolon

– Pointers provide machine independent address
arithmetic

– C has control-flow constructs required for well
structured programs:

• statement grouping { ... }

• decision making if-else

• selecting on of several cases switch-case

• looping with test at top while, for

• looping with test at bottom do-while

• skip to loop top continue

• break out of loop break

Appendix I – Elements of C and C++ page 6

And More C Elements Contents

• Paraphrasing Kernighan and Ritchie:

• Variables:

– may be internal to a function, external but known only
within a single source file, or visible to the entire pro-
gram, e.g., local, file, or program scope.

• Functions:

– Function arguments are passed by value, minimizing
side-effects, but that makes returning results from
functions more complex

– Any function may be called recursively

– Functions may be passed and return values of basic
types, structures, unions, or pointers

– Local variables are created anew for each function
invocation unless qualified as static

– Function definitions may not be nested, but variables
can be declared in a block-structured fashion.

– blocks are delimited by { ... }

– local declarations must appear at the beginning
of each block before any expressions

– The functions of a C program may exist in more than
one source file and may be compiled separately.

Appendix I – Elements of C and C++ page 7

More C Language Elements Contents

• There are three types of statements in a C program:

– preprocessor statements

– start with # and end with a newline

– perform macro text substitution

– provide text inclusion of other source files

– define conditional compilations

– declarations and definitions announce types for
named variables and functions

– appear at the beginning of a block and end with a
semicolon

– definitions reserve named memory locations

– Only one definition is allowed for each variable
and function

– declarations simply announce types to the com-
piler. There may be multiple consistant declara-
tions for a C program variable or function

– expressions have values and are formed as combina-
tions of operators and variables

– the value of an expression is temporary,
occupying anonymous storage, unless assigned
to a named variable

– temporaries are often call r-values

– named variables are often called l-values

Appendix I – Elements of C and C++ page 8

C Language at a Glance Contents

The C Language is essentially this:

C itself is simple, but has a rich, expressive set of
operators and an extensive library of powerful com-
ponents.

45 library modules

50 operators35 keywords

Appendix I – Elements of C and C++ page 9

C/C++ Tokens Contents

{ } - group statements

() - group expressions to control order of evaluation

/* - begin comment

*/ - end comment

\ - line continuation

- begin preprocessor statement

“ - delimit beginning and end of string constant

‘ - delimit beginning and end of character constant

: - terminate class access controls public:, protected: and private:

; - terminate statements

constants

identifiers

strings

punctuators

operators

keywords

C/C++ tokens

{ } () / * \ # “ ‘ : ;

Appendix I – Elements of C and C++ page 10

C/C++ Objects Contents

scalar

integral

short

int

long

char

enum

arithmetic

floating

float
double

long double

pointer

derivedvoid

function

union

array

struct/class

aggregate

C/C++ Objects

reference

Appendix I – Elements of C and C++ page 11

C/C++ Keywords Contents

----< data definition >---------------------------------< C and C++ >----

char bool double - intrinsic data types

float int void

const extern long - data type modifiers

mutable short signed

static typename unsigned

enum struct union - aggregate types

----< control flow >--------------------------------------< C and C++ >----

do while for - looping constructs

break continue - loop short circuits

if else - logical branches

goto - illogical branches

return - function termination

switch case default - case selection

----< class definition >----------------------------------< C++ only >----

class - user defined type

private protected public - class access control

operator virtual - modifying functions

explicit - prevent implicit convers.

this - object state pointer

friend - access override

Appendix I – Elements of C and C++ page 12

C/C++ Keywords Contents

----< user allocated memory management >----< C++ only >----

delete new

----< defining generic types >-----------------------< C++ only >----

template export typename

----< handling exceptions >--------------------------< C++ only >----

catch throw try

----< new style casts >--------------------------------< C++ only >----

const_cast static_cast dynamic_cast reinterpret_cast

----< run-time type information >-------------------< C++ only >----

typeid typeinfo - language defined type

----< system resource control >-------------------< C++ only >----

inline namespace using

----< system resource control >-----------------< C and C++ >----

asm auto register sizeof typedef

volatile

Appendix I – Elements of C and C++ page 13

C/C++ Operators Contents

:: scope resolution class_name::member ltr

:: global ::name

. member selection object.member ltr

-> member selection pointer->member

[] subscripting pointer [int expr]

() function call expr (expr_list)

() value construction type (expr_list)

sizeof size of object sizeof expr

sizeof size of type sizeof (type)

++ post increment lvalue ++ rtl

++ pre increment ++ lvalue

-- post decrement lvalue --

-- pre decrement -- lvalue

~ complement ~ expr

! not ! expr

- unary minus - expr

+ unary plus + expr

& address of & lvalue

* dereference * expr

new create (allocate) new type

new[] create array new type[int expr]

delete destroy (de-allocate) delete pointer

delete[] destroy array delete [] pointer

() cast (type conversion) (type) expr

.* member section object.pointer-to-member

->* member section pointer->pointer-to-member

* multiply expr * expr ltr

/ divide expr / expr

% modulo (remainder) expr % expr

+ add expr + expr ltr

- subtract expr - expr

Appendix I – Elements of C and C++ page 14

C/C++ Operators Contents

<< shift left expr << expr ltr

>> shift right expr >> expr

< less than expr < expr ltr

<= less than or equal to expr <= expr

> greater than expr > expr

>= greater than or equal to expr >= expr

== equality test expr == expr ltr

!= non equality test expr != expr

& bitwise AND expr & expr ltr

^ bitwise exclusive OR expr ^ expr ltr

| bitwise inclusive OR expr | expr ltr

&& logical AND expr && expr ltr

|| logical inclusive OR expr || expr ltr

? : conditional expression expr ? expr : expr rtl

= assignment lvalue = expr rtl

*= multiply and assign lvalue *= expr

/= divide and assign lvalue /= expr

%= modulo and assign lvalue %= expr

+= add and assign lvalue += expr

-= subtract and assign lvalue -= expr

<<= shift left and assign lvalue <<= expr

>>= shift right and assign lvalue >>= expr

&= AND and assign lvalue &= expr

|= OR and assign lvalue |= expr

^= exclusive or and assign lvalue ^= expr

, comma (sequencing) expr, expr ltr

Appendix I – Elements of C and C++ page 15

The ANSI Standard C Library Contents

• The C language provides:

– no operations to deal directly with composite objects
such as character strings, lists, or arrays other than bit-
for-bit assignment of structures

– no storage other than static and local variables

– no input and output to devices or files

• These capabilities and more are provided by the
ANSI C library:

– cstdio provides input and output functionality

– cstdlib provides dynamic memory allocation

– cstring has facilities for managing null terminated
strings of characters

– cctype provides support for testing a character’s
inclusion in classes, e.g., alphanumeric, whitespace,
control, ...

– cmath provides many of the elementary transcendental
functions

– cfloat helps in dealing with underflow, overflow and
loss of precision in floating point operations

Appendix I – Elements of C and C++ page 16

ANSI Standard C Library Contents

• Additional C library capabilities are:

– ctime // C-style date and time

– cassert // macros supporting use of assertions

– cerrno // C-style error handling

– cctype // character classification

– cwtype // classifying wide characters

– cstring // management of C-style strings

– cwchar // supports wide C-style strings

– climits // numeric scalar limit macros

– cstddef // C-language support

– cstdarg // supports variable length argument lists

– csignal // C-style signal handling

Appendix I – Elements of C and C++ page 17

ANSI C++ Library Contents

• A standard for the C++ language has been approved
by the ANSI X3J16 committee and ISO committee
WG21. A draft standard was released for public
review in February, 1994, and approved November,
1997. The official standard was approved in 1998.

• The standard defines a library which includes modu-
les:

– exception // defines exception, bad_exception
stdexcept // defines all other exception types
new // defines bad_alloc
typeinfo // defines bad_cast, bad_typeid
ios // defines ios_base::failure

– new // augmenting operators new and delete

– typeinfo // run-time type identification

– iostream // io streams, standard stream objects

– iomanip // formating, state control of iostreams

– fstream // read/write to files you open by name

– sstream // read/write char sequences in memory

– string // create character string objects

– complex // definition of complex numbers

– numerics // numeric operations

• Here’s a complete list:
http://CppReference.com/w/cpp/header

http://cppreference.com/w/cpp/header

Appendix I – Elements of C and C++ page 18

ANSI C++ Library Contents

• A set of extensible generic programming modules
are also provided, referred to collectively as the STL,
or standard template library, which includes:

– functional // function objects

– memory // allocators for containers

– iterator // support for iteration

– algorithm // general algorithms

– vector // expandable array

– list // doubly linked lists

– deque // double-ended queue

– queue // queue of T

– stack // stack of T

– map // ordered set of pairs of
// (key,value)

– set // ordered set of key

– Unordered_map // unordered set of pairs of
// (key, value)

– bitset // set of Booleans

• Here’s a complete list:
http://CppReference.com/w/cpp/header

http://cppreference.com/w/cpp/header

Appendix I – Elements of C and C++ page 19

C/C++ Compilation Model Contents

PreProcessor

Linker

Compiler

current.h

Header File

current.cpp

Implementation File

Intermediate Source

Code File

current.exe

Execution Image

current.obj

Object File

other *.obj

Object Files

*.lib

Library Files

Loader
*.dll

Dynamic Link

Library Files

running process

other

Header Files

Appendix I – Elements of C and C++ page 20

C/C++ Computational Model Contents

Static Memory

global data

Stack Memory

allocated only for each

function invocation

Heap Memory

allocated at

run-time

Command Line

cin, stdin

ifstream

cout, stdout

cerr, stderr clog, stdlog

Program Model

void main(int argc, char *argv[]) {...}

function

Memory Model

ofstream

I/O Model

Appendix I – Elements of C and C++ page 21

free memory

allocated heap memory

free heap memory

C/C++ Memory Model Contents

main stack frame

function called by main

stack frame

current function

stack frame

more stack frames

:

defined outside any function (globals) and initial-

ized before main is entered.

global data and functions are made private by

qualifying as static, otherwise they are public

memory allocations local to a function, but quali-

fied as static

- defined only while computational thread passes

through a function.

- holds input parameters, local data, and return

values, used as scratch-pad memory

- guaranteed to be valid during the evaluation of

a containing expression, won’t be valid after

- expression evaluation starts with function eval-

uation first, then expression evaluation as alge-

braic combination of terms

- stack frame is destroyed when expression eval-

uation is complete

- allocated/deallocated at run time by invoking

operators new /delete (or functions malloc/free)

- memory is available to anyone with a pointer

to the allocated memory from the time of

allocation until deallocated.

public global functions

and data

private global functions

and data

local static data

Static memory: - available for the lifetime of the program

Stack memory: - temporary scratch pad

heap memory: - valid from the time of allocation to deallocation

Appendix I – Elements of C and C++ page 22

Run Time Flexibility Contents

• Compile-time memory allocation
Compile-time allocation of data objects is directly
supported by the language.

int x[25]; /* size determined at compile-time */

But frequently the designer does not know either
the size of objects collected at run time or the
number of objects that the program must handle.

• dynamic memory allocation.
The Standard Library modules stdlib (C) and new
(C++) provide simple and effective means of
acquiring additional memory allocations from the
operating system. These facilities are especially
useful for creating composite data objects on
demand on the heap at run-time.

X* x = (X*) malloc(numObjs * sizeof(X)); (C)
X* x = new X[numObjs] (C++)

• pointers
C provides access to dynamic memory through
pointers. Address arithmetic supports incrementing
and adding offsets to pointers. Arithmetic is
“smart”:

– Incrementing a pointer adds to the pointer address the
size of one object of the type pointed to.

– Adding an integer, n, offset to a pointer creates an
address n objects away from the original address.

Appendix I – Elements of C and C++ page 23

Run-Time Flexibility Example Contents

• The standard containers are good examples of the
flexibility C++ programs enjoy by using run-time
allocation of resources - in this case memory from
the heap.

• The str class (Handouts/CSE687/Code/STR) is a
demonstration of how to build Abstract Data Types.
Objects from the str class have a specific amount of
character memory defined by the str constructor. If
appends to the string build a character sequence
which is longer than constructed memory size the str
object will reallocate a larger memory block, copy
over the current characters, and continue appending.

None of this requires intervention by client code.
The result of this is that str objects appear to have
unlimited ability to append characters without
wasting a lot of space when handling small strings.

• Advantages of run-time allocation are hard to over-
state. Clients simply use str objects without needing
a lot of fussy logic to make sure fixed memory
allocations are not overrun.

str use seems simple to clients, even though quite a
bit of memory management is going on silently.
That simplicity translates into fewer errors, and no
anomalous behavior, as happens when fixed memory
limits are reached.

Appendix I – Elements of C and C++ page 24

Efficiency Contents

• One goal of the C language was to replace the use
of assembly language in system programming. The
UNIX system, for example, is written mostly in C.

– C was designed to create and manage composite data
structures with small computational and memory costs

– C is a strongly typed language that provides the
designer with a lot of help in using complex data
correctly

– However, the language allows the designer to by-
pass type matching through casts in order to
support interfaces with hardware and other
system software.

– Furthermore, C provides a set of coercions
between data types to flexibly support mixed
mode expressions.

– C does no run-time checking. It will:

– support requests to index beyond static and
dynamic array bounds for both reading and
writing

– maintain pointers to objects which go out of
scope

– copy data into memory that has never been
allocated to the program or is no longer valid

– attempt to return memory to the operating system
more than once if asked to do so

– Any of the preceding events spells DISASTER. The C
language comes without seat belts. It will happily do
what it is asked to do, assuming that the designer
understands the consequenses of any request.

Appendix I – Elements of C and C++ page 25

Efficiency Trade-offs in C++ Contents

• C has no run-time checking of array indexing, pointer
arithmetic, or memory allocation status. The result is
very fast programs, but the possibility of nasty errors
induced by overrunning memory bounds, using
uninitialized pointers, or invalid memory.

• C++ has the facilities to allow designers to buld in as
much or as little run time checking as they want. It is
even possible to build in checks that can be turned on
or off as needed.

An example is the str class. The indexing operator
which returns values or writes into characters defined
by s[i] has built in bounds checks on the index i.
Should i be negative or exceed the allocated array
size, the index operator will throw an exception with
an informative error message.

• This level of flexibility is just not available in the tradi-
tional languages like FORTRAN or Pascal.

• Note that, unlike my str class, bounds checking is not
done in the standard C++ string class. This design
choice was made for reasons of performance.

Appendix I – Elements of C and C++ page 26

Elements of C++ Language Contents

• C++ is nearly a superset of C.

• Many, but not all, C programs will compile as C++
programs. C and C++ components are link compat-
ible and so both may be parts of the same program.

• C++ strengthens C language support for procedural
programming:

– a new derived type, the reference, is provided to
enable pass by reference, not provided by C.

– Pass by reference makes external objects directly
accessible in functions instead of providing copies of
the original objects.

– This allows the designer much more control over when
side effects do or do not occur.

– new input/output streams modules are provided which
greatly simplify I/O.

– C++ provides the keyword template to support the
design of generic components - one design and
implementation for many different types.

– keyword inline supports the use of function syntax for
inline code to eliminate function call overhead for very
simple processing.

– keywords catch and throw support the handling of
exceptions

Appendix I – Elements of C and C++ page 27

Pass by Value and by Reference Contents

• Suppose function g is declared as:

void g(char a, char& b);

• When a is passed by value to function g(a,b) a copy of a
is created on g’s stack frame for all use by g. If g should
change a’s value, no change is made to the original back
in static memory.

• when b is passed by reference to g(a,b) an implicit
pointer to b is copied onto the stack frame for all
accesses by g to the object b. Should g change the
value of b it changes the original back in static memory.

• You should think of the reference parameter as an alias,
e.g., another name, for the object passed to the function
in that position.

static memory g’s stack frame memory

heap memory

a

ptr

b

ptr

a

Appendix I – Elements of C and C++ page 28

More Elements of C++ Contents

• C++ provides strong support for data abstraction:

• designers create new types using classes

– classes have both data members and member functions

– these are divided into a public interface and private or
protected implementation

• objects (instances of a class) are essentially active data.
Public members provide safe and simple access to data
which may have complex internal and private
management

• objects are declared and destroyed in exactly the same
way that variables of the basic C language types are.

– user defined constructors build class objects when they are
declared

– user defined destructors remove the objects when they go
out of scope

• C++ operators new and delete directly support the run-
time creation of objects

• Operators can be overloaded to have meanings unique
to each class

– overloading, which applies to all functions, not just
operators, is accomplished by using the function’s
signature (name and types of formal parameters) as its
identifier. Thus two functions with the same name but
different argument tuypes represent unique functions.

Appendix I – Elements of C and C++ page 29

Still More C++ Elements Contents

• C++ supports object oriented programming (OOP):

• OOP is concerned with building type relationships
and type hierarchies

• objects may be composed by using one object as a
data member of another object. This relationship is
called aggregation or composition.

– This is a very powerful way of building software
incrementally.

• two classes which share some common attributes
and behaviors can be derived from a common base
class, sharing both design and code.

• public inheritance provides the derivation mechan-
ism. It establishes an “is-a” relationship between
derived classes and their base class. A derived
object “is-a” base class object with extensions or
modifications.

• since derived classes have all the attributes and
behaviors of their base classes, client code will
accept them wherever it expects a base class object.

– this is a very powerful way of removing need-to-know
from client code. Clients do not need to know the
details which separate the various flavors of derived
objects.

– derived class objects tailor base class behaviors in a
way suitable for their own needs by redefining virtual
base class functions

Appendix I – Elements of C and C++ page 30

C++ Language at a Glance Contents

The C++ language is essentially this:

47 library modules

56 operators

55 keywords

classes

Appendix I – Elements of C and C++ page 31

Differences between C and C++ Contents

• C++ is almost a superset of the C programming lan-
guage. There are many additions, and a few
changes to the existing C syntax and semantics.

• The largest differences are introduction of classes,
inheritance, and polymorphism to support object
oriented software development and templates to
support generic programming.

• A class represents a set of objects, all of which
share the same attributes and behaviours, e.g., a
user defined type.

– Attributes are the set of values an object may assume.
The specific values of an object’s attributes are called
it’s state. The state of each object is unique.

– Behaviours are all the operations allowable on an
object’s state. They are defined by class member and
friend functions.

• Inheritance defines a relationship between classes.
– public inheritance defines type compatibility

relationships between the base and derived classes

– private inheritance defines a uses relationship between
base and derived classes.

• Polymorphism allows client code to treat all objects
drawn from one inheritance hierarchy as members of
the base class. Clients don’t need to know all the
details that distinguish one derived class from
another.

Appendix I – Elements of C and C++ page 32

Differences between C and C++ Contents

Additions

– Keywords class, friend, operator, private,
protected, public, this, and virtual support the
structuring of classes

– Keywords new and delete support a revised dynamic
memory management process

– Keywords template, typename, and export support
the implementation of generic classes

– Keywords try, catch and throw support exceptions.

– Keyword inline supports efficient partitioning

– Keywords const, volatile, and mutable allow the
compiler to enforce rules concerning changes to
program variables.

– keyword namespace supports large scale software
development

– keyword typeid supports run-time type information

– keywords dynamic_cast, static_cast, const_cast,
and reinterpret_cast make casts visible and
unambiguous

Appendix I – Elements of C and C++ page 33

Differences between C and C++ Contents

• Additions (continued)

– Functions may be overloaded. That is, one name
may refer to more than one function. Overloaded
functions are distinguished based on their signatures.

The signature consists of a concatenation of the func-
tion name and type of each of its arguments. Return
type is not part of the signature.

The signature acts as an extended identifier and is
bound to specific code at compile time.

– A C++ expression can pass objects to a function by
reference as well as by value (the C language supports
only pass by value).

– Function arguments can have default values. If the
argument is omitted in an invocation, the default value
is supplied.

– Some simple functions can be inlined to avoid the
overhead of function calls, e.g., creating a stack frame
and copying parameters and return values.

Appendix I – Elements of C and C++ page 34

Differences between C and C++ Contents

• Additions (continued)

– Virtual Member Functions may be overridden. That is,
one name may refer to more than one virtual function, based
on whether it belongs to a base class or one of its derived
classes. Overridden functions are distinguished based on the
type of the object referred to by pointer or reference.

The signature of overriding functions must match exactly with
the signature used in the base class. There is one exception to
this for covariant return types (see below).

Since this is the C++ language, there is a qualification of this
rule. If the return type of the base function is a base pointer
or reference, the return type of the overriding function can be
a pointer or reference to that derived type. This is called a
covariant return type.

– A client using a pointer or reference to an object of a class
hierarchy (base-derived graph) the client does not need to
know the type of object referred to. It simply uses the
protocol provided by the base class public interface.
Overridden (virtual) functions are called based on the object
type, not on the type of the base class pointer or reference.

This action is called polymorphism, and is a very powerful way
of designing loosely coupled systems. Clients do not need to
know anything about the design of a class hierarchy, nor are
they bound in any way to those details. All they need to know
is the base class protocol.

– Very often polymorphic calls are the result of passing a
function a base class pointer or reference, bound to a derived
class object. This is one reason why C++ references are so
important. These polymorphic calls are bound at run time.

Appendix I – Elements of C and C++ page 35

Differences between C and C++ Contents

Changes

• keyword static has additional semantics used to support the
structuring of classes

– original meaning #1:
When qualifying a global function or variable, reduces
visibility from linker public to file global.

– original meaning #2:
When qualifying a local variable, expands the valid
lifetime from this invocation to the lifetime of the
program.

– new meaning #1:
Static member data items in a class are shared among
all objects of the class.

– new meaning #2:
Static member functions are invoked using the class
name, as in C::memfunc(), and can operate only on
static member data, global data, or formal parameters.

Obviously C++ is a context dependent language!

Appendix I – Elements of C and C++ page 36

Differences between C and C++

More Changes

• single line comments can now be created

– the prefix string "//" starts a one line comment

– traditional C style comments, /* ... */ are still supported

• C++ has added an "IOSTREAM" class implemented with
standard library and header files which makes the ANSI C
STDIO obsolete for simple I/O.

Output to stdout is invoked by the statement:

int x = 5;

cout << x << "\n";

which supplants the STDIO function:

int x = 5;

printf("%d\n",x);

• struct is optional when defining a data structure although
still needed when declaring a structure

struct tag { ... }; // declaration

tag t; // definition

• enum now has file scope unless declared extern

enum tag { name1, name2... } e1; // file scope

extern enum publicTag { nameA, nameB, ..} e2;
// linker scope

Differences between C and C++ Contents

Appendix I – Elements of C and C++ page 39

Resources Used to Build C++ Programs
Contents

• 55 keywords

– data definition

– control flow

– class definition

– memory management

– defining generic types

– handling exceptions

– managing type system (casts)

– run-time type information

– scope control

– managing compiler information

• 56 operators

– scope control

– member and element access

– arithmetic

– logical operations

– comparisons

– memory management

• 47 standard C++ and C library modules

– input and output

– manipulation of character strings

– mathematical operations

– containers, iterators, algorithms

– error management

– Operating System interface

Appendix I – Elements of C and C++ page 40

Learning and Reference Resources

• Sample Code

– instructor’s code

– archive of your own homework and projects

• Class Texts

– complete, accurate, effective references

• Class Notes

– focus on concepts.

– summary of language facilities, e.g., keywords,
operators, libraries.

– some detailed code examples in key areas - see
chapters 4 and 5 and the appendices.

• Compiler

– error messages

– help system

• Instructor and Teaching Assistants

