CSE687 - Object Oriented Design

 Spring 2010

PRIVATE
Project #3 – Class and Object Inspector

 due Sat, April 10
version 2.3
Purpose:
This project develops a facility to inspect the design of C++ classes and some aspects of the operation of their instances. The design inspector parses each file of a set of specified C++ files, examines their code against a set of predefined rules and displays results of the analysis, including a list of all rule violations for each class. The operation inspector supports logging of time-stamped entries for function calls, allocation and de-allocation of objects, and provides a logging manager responsible for displaying log results.

Requirements:

Your project:

1. shall use standard C++
 and the standard library, compile and link from the command line, using visual Studio 2008, as provided in the ECS clusters and operate in the environment provided there
.

2. shall use services of the C++ std::iostream library for all input and output to and from the user’s console
 and C++ operator new and delete for all dynamic memory management, if you use any.

3. shall provide a rule-based design inspection parser that analyzes C++ source code against a set of pluggable rules. The rules set shall provide at least the following detections:

a. presence of manual and maintenance pages

b. header file has #ifndef and #define preprocessor statements

c. implementation file has test stub with #ifdef TEST preprocessor statement

d. no non-const global data

e. use of initialization lists on all non-default constructors

f. use of virtual destructor if the class has any virtual functions

g. no overloads of virtual functions or across class scopes

4. shall provide an object (operation) inspector that logs each function call, invocation of new and delete, and provides a logging interface that all logging operations use, including instances of classes that may be designed outside this project.

5. Each instance of an inspected object shall communicate log items to a log manager, defined somewhere in its process. How that communication can be supported is an interesting design question.

6. All log items shall be time-stamped and define the event that triggered the creation of the item, e.g., foobar invoked. Extra credit will be awarded if you provide an option to report the function’s parameter and return values (this isn’t quite as easy as it sounds).

7. Your design shall provide a code annotator that declares a logging instance at the beginning of each function in each file in the object’s operation inspection set and declares a log manager instance in the process’s main function entry point. The annotator replaces each invocation of new and delete with an instance of an allocator that wraps the new or delete and provides for logging that operation. Note that you need to be careful to correctly handle the differences needed for allocating single objects or arrays of objects.

8. You will be awarded extra credit if you support providing a list of all functions in a design inspection set and allowing the user to include or exclude a subset of those functions for logging. You should plan to handle this by selecting which functions to decorate with logging instances.

9. shall provide a zip archive with the sourced code required to build your project, compile and run batch files that, when unzipped in an empty folder on any drive will compile and run without user intervention, demonstrating each of the project requirements.

10. shall provide a Visual Studio solution file that also demonstrates each of the requirements above.

Note that there is no requirement to provide a graphical user interface.
� You are required to use only native standard C++, except as noted in footnote 3, below.

� VC++ is provided by Visual Studio 2008, and is available in all the ECS clusters.

� You may use a WinForm interface, but are not required to do so. For that part, only, you may use managed C++ code and do input/output through WinForm controls instead of iostreams.

