CSE687 - Object Oriented Design

 Spring 2010

PRIVATE
Project #2 – Dependency Graphs

 Extended - due Monday, March 15
version 2.1

Purpose:
This project requires you to build a template-based facility to represent graph data structures. You will then use that facility to store package calling dependency structures, using some of the functionality you provided in Project #1. Dependencies between calls have the interesting property that there may be mutual dependency relationships between two or more calls, due to recursion. We call such a mutual dependency set a strong component in the package dependency graph.
A lot of literature has been devoted to efficient algorithms for establishing the existence, and analyzing membership, of strong components. You will be required, as part of this project, to analyze the strong component structure of any graph given in your representation.

Requirements:

Your DEPENDENCY program:

1. shall use standard C++
 and the standard library, compile and link from the command line, using VC++ 9.0, as provided in the ECS clusters and operate in the environment provided there
.

2. shall use services of the C++ std::iostream library for all input and output to and from the user’s console and C++ operator new and delete for all dynamic memory management.

3. shall use a template-based graph facility, of your design. This facility shall be composed of a graph class which uses the services of a vertex class, in an adjacency structure
. Each graph vertex has an entry in the adjacency structure. Edges are simply references that a vertex holds to other vertices. Each reference is accompanied by an instance of the edge type. Each vertex shall hold a std::vector of std::pairs. Each pair holds a reference to a child vertex and an instance of the edge type
.

4. Your graph class shall provide correct assignment and copy construction, and shall provide Depth First Search (DFS) for graph traversal. This search shall accept a function or functor operation, to be executed on each vertex and/or edge of the graph. Your project shall provide a functor that enunciates each vertex visited and each edge traversed.

5. The graph package shall support analysis of strong components
 for any representable graph, shall support the creation of a condensed graph (the graph of strong components), and implement a Topological Sorting algorithm on condensed graphs.

6. Your graph class shall support containment of an instance of a parametrized type in both graph vertices and edges that join vertices. Vertices and edges will each have their own template parameter, so that different types may be so contained. That is, the graph class will be parameterized on both types, like so:

template <typename VertexType, typename EdgeType> class graph { … };

7. shall provide two global algorithms that return collections of all vertices (or references to vertices) that match a specific value for the contained instance of the vertex parameterized type, and all edges (or references to edges) that match a specific value of the contained instance of the edge parameterized type.

8. The graph package shall provide a function to build one or more named graphs from an XML file. A sample of the file syntax is provided below. Since template types are defined at compile-time, your program can, at most, build graphs with a finite set of types, specified at compile time, for vertices and edges. The graphbuilder shall support building graphs with any combination of string and double template parameters.

The XML file format shall use the following syntax (you should test graph<string,string> and graph<string,double>):

 <? xml version=1.0 ?>

 <graphs name=”Project #2” author=“Joe Code“>
 <!-- test application #1 -->
 <graph name=”g1” vt=”string” et=”string”>

 <v vtv=“v1“><e etv=”e1”>4</e><e etv=“e2“>7</e></v>

 <v vtv=“v2“><e etv=“e3“>5</e><e etv=“e4“>7</e></v>

 <v vtv=“v3“><e etv=“e5“>1</e></v>

 <v vtv=“v4“></v>

 <v vtv=“v5“><e etv=“e6“>6</e><e etv=“e7“>7</e></v>

 <v vtv=“v6“><e etv=“e8“>2</e></v>

 <v vtv=“v7“><e etv=“e9“>3</e></v>

 </graph>

 <graph name=“g2“vt=”string” et=”double”></graph>

 </graphs>

9. shall provide a test executive package and a display package, that, combined with the graph facility, demonstrates you meet all the requirements of this specification. This should demonstrate reading graphs from files as shown in requirement #8, and traversing and analyzing their strong component structure.

10. shall, as a test case, analyze and show package or file dependencies of all source code provided for this project. Store a package or file name in each vertex of the graph, and store the relative path between packages in each edge
. Please display the output in a topological sort order. Your Executive shall accept a path for files to analyze on command line.

11. Your project submission shall be uploaded in a zip file archive, including two batch files named compile.bat and run.bat that compile your project and run it using appropriate command line arguments. Please also include a Visual Studio solution that when run demonstrates you meet these requirements.

Note that requirement #10 does not ask you to provide a graphical representation of the dependency relationships. You may simply provide a text representation (please design this yourself).
You should think carefully about the output of this program. The quality of your design is measured, in part, by how well you compose the structure of your output. Note that there is no requirement to provide a graphical user interface. This tool can be implemented very effectively with a command-line input and file and console outputs.

[image: image1.emf]“v1”

“v3”

“v4” “v7”

“v2”

“v5”

“v6”

“e8”

“e3”

“e6”

“e7”

“e4”

“e1”

“e5”

“e9”

“e2”

[image: image2.emf]“V1”

4

“e1”

7

“e2”

V1

V2

V3

V4

V5

V6

V7

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� This means, for example that you may not use the .Net managed extensions to C++.

� VC++ version 8.0 is provided by Visual Studio .Net 2005, and is available in all the ECS clusters.

� We will discuss adjacency collection in class.

� We have intentionally been somewhat vague about the nature of an edge reference. This will be discussed carefully in class. Note that the details of this requirement preclude you from using a separate edge class in this project.

� � HYPERLINK "http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-strong-components.pdf" �http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-strong-components.pdf�

� The last part of this requirement asks you to encode, in each edge, the relative path from the package being analyzed to a package that has been included (and therefore, presumably, represents a dependency relationship). Note that the include statement will show the relative path.

[image: image3.emf]“v1”

“v3”

“v4” “v7”

“v2”

“v5”

“v6”

“e8”

“e3”

“e6”

“e7”

“e4”

“e1”

“e5”

“e9”

“e2”

[image: image4.emf]“V1”

4

“e1”

7

“e2”

V1

V2

V3

V4

V5

V6

V7

_1328882937.vsd
“v1”

“v3”

“v4”

“v7”

“v2”

“v5”

“v6”

“e3”

“e6”

“e8”

“e7”

“e4”

“e1”

“e5”

“e9”

“e2”

_1328884094.vsd
“V1”

4

“e1”

7

“e2”

V1

V2

V3

V4

V5

V6

V7

