
Ultimate Extensible
Distributed System

Jim Fawcett

CSE686 – Internet Programming

Summer 2009

2

Table of Contents

Your Assignment

◼ Your supervisor just handed you a spec for
implementation of:
◼ Distributed system with universal connectability

using sockets

◼ Can process an open-ended variety of documents

◼ Expandable by 5 orders of magnitude in ten years

◼ Can add new tools easily

◼ Supports 50 million users a day without gridlock.

◼ You say NO WAY!

◼ Well, maybe.

3Table of Contents

Introduction to Internet and Web

◼ This presentation addresses two questions:
◼ Is that possible?

◼ Well yes – look over there – the web!

◼ How was it accomplished?
◼ Processing structure and protocols
◼ Programming tools

▪ Web servers and browsers that host:
▪ Script languages, e.g., Javascript, VBScript,

Perl, Ruby, …
▪ Programming languages:

Visual Basic, Java, C++, C#, …

◼ And, of course, some very smart people

4Table of Contents

Table of Contents

◼ Introduction to the Internet and Web
◼ Internet Design Principles
◼ Internet and Web History
◼ Web Technologies
◼ Pinging Various URLs
◼ Web Processing Models
◼ Programming The Web
◼ Extending The Web
◼ People in the Web

5Table of Contents

Goals of the Internet:

◼ Build distributed system to share documents.
◼ Support expansion by 5 orders of magnitude in ten

years – 200 hosts to 500 million hosts.
◼ Manage communication between hundreds of

millions of machines every day without collapsing
from congestion.

◼ Provide for arbitrary extensions:
◼ From static text documents to graphics,

dynamic content, streaming video,
programmable interfaces, voice, …

6Table of Contents

Internet Design Principles

◼ Goal is connectivity
◼ Achieved with Internet Protocol (IP)

◼ Stateless so survives failures – no need to backup

◼ Made scalable with end-to-end intelligence
◼ Transport Control Protocol (TCP)

◼ Sender does not send until receipt is acknowledged
◼ Amount sent is based on receiver’s current

available buffer size – so receiver won’t be flooded.

◼ Be strict when sending and tolerant when receiving

◼ Protocol Specific Packet Headers
◼ Internet Design
◼ Robustness and the Internet

http://www.sans.org/resources/tcpip.pdf
http://livinginternet.com/i/iw_arch.htm
http://netlab.caltech.edu/pub/papers/part1_vers4.pdf

7Table of Contents

Original Goals of the Web

◼ Universal readership

◼ When content is available it should be
accessible from any type of computer,
anywhere.

◼ Interconnecting all things

◼ Hypertext links everywhere.

◼ Simple authoring

8Table of Contents

Web Design Principles

◼ Universal

◼ Decentralized

◼ Modular

◼ Extensible

◼ Scalable

◼ Accessible

◼ Forward/backwards compatibility

◼ Architecture of World Wide Web

http://www.w3.org/Talks/1998/12/18-unibo/Overview-2.html

9Table of Contents

Basic Concepts

◼ Client/Server Model

◼ Universal Addressing
◼ TCP/IP, DNS

◼ Search Engines

◼ Universal Protocols
◼ HTTP, URLs, HTML, FTP

◼ Format Negotiation through HTTP

◼ Hypertext → Hypermedia via HTML
→ XHTML → HTML5

◼ Support for text, images, sound, and scripting

10Table of Contents

Internet and Web History

11Table of Contents

Internet History

◼ 1961 – First paper on packet-switching theory, Kleinrock, MIT
◼ 1969 – ARPANet goes on line

◼ Four hosts, each connected to at least two others
◼ 1974 – TCP/IP, Berkley Sockets invented
◼ 1983 – TCP/IP becomes only official protocol
◼ 1983 – Name server developed at University of Wisconsin.
◼ 1984 – Work begins on NSFNET
◼ 1990 – ARPANET shutdown and dismantled
◼ 1990 – ANSNET takes over NSFNET

◼ Non-profit organization – MERIT, MCI, IBM
◼ Starts commercialization of the internet

◼ 1995 – NSFNET backbone retired
◼ 1998 – DNS transferred from Dept of Commerce to ICANN
◼ 2000 – Web size estimates surpass 1 billion indexable pages

12Table of Contents

Web History

◼ 1990 – World Wide Web project

◼ Tim Berners-Lee starts project at CERN

◼ Demonstrates browser/editor accessing hypertext files

◼ HTTP 0.9 defined, supports only hypertext, linked to port 80

◼ 1991 – first web server outside Europe

◼ CERN releases WWW, installed at SLAC

◼ 1992 – HTTP 1.0, supports images, scripts as well

◼ 1993 – Growth phase

◼ 1994 – CERN and MIT agree to set up WWW Consortium

◼ 1999 – HTTP 1.1, supports open ended extensions

13Table of Contents

Web Growth Phase – 1993

◼ InterNIC created to provide registration services

◼ WWW (port 80 HTTP) traffic is 1% of NSFNET traffic

◼ 200 Known HTTP servers

◼ Article on WWW in New York Times

◼ Mosaic first release

14Table of Contents

Web Growth

http://www.techcrunch

.com/2009/05/08/is-

the-growth-of-the-

web-slowing-down-or-

just-taking-a-breather/

http://www.useit.com/alertbox

/web-growth.html

15Table of Contents

Web Technologies

16Table of Contents

Tools: Servers on the Internet

◼ HTTP - HyperText Transport Protocol
◼ JSP and ASP add dynamic content

◼ Web Services add RPC program interface

◼ FTP - File Transport Protocol

◼ Gopher - Text and Menus

◼ NNTP - Network News Transfer Protocol

◼ DNS - Distributed Name Service

◼ telnet - log into a remote computer

◼ New tools - if they use TCP/IP just add them

17Table of Contents

Network Protocol Stack

HTTP

TCP

IP

Ethernet

HTTP

TCP

IP

Ethernet

18Table of Contents

Network Protocols

Application

Layer

Presentation

Layer

Session

Layer

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Internet

Layer

Application

Layer
Telnet FTP SMTP DNS RIP SNMP HTTP

IP

Host-to-Host

Transport

Layer

TCP UDP

Token

Ring
Ethernet ATM

Frame

Relay

Network

Interface

Layer

OSI Model

Layers

TCP/IP

Protocol

Architecture

Layers

TCP/IP

Protocol Suite

ARP
ICMPIGMP

19Table of Contents

Networks - Transport Layer

◼ Provides efficient, reliable and cost-effective service

◼ Uses Sockets programming model

◼ Ports identify application
◼ Well-known ports identify standard services

(e.g. HTTP uses port 80, SMTP uses port 25)

◼ Transmission Control Protocol (TCP)
◼ Provides reliable, connection-oriented byte stream

◼ UDP
◼ Connectionless, efficient, unreliable

20Table of Contents

Communication Between Networks

◼ Internet Protocol (IP)

◼ Routable, connectionless datagram delivery

◼ Specifies source and destination

◼ Does not guarantee reliable delivery

◼ Large message may be broken into many datagrams, not
guaranteed to arrive in the order sent

◼ Transport Control Protocol (TCP)

◼ Reliable stream transport service

◼ Datagrams are delivered to the receiving application in
the order sent

◼ Error control is provided to improve reliability

21Table of Contents

Pinging Various URLs

Ping in network

– few millisec

Ping in Syracuse

– few tens of millisec

Ping to Moscow

– few hundreds of millisec

22Table of Contents

Tracing HTTP Message with Tracert

24Table of Contents

HTTP Messages
as seen by packet sniffer

TCP 113 192.168.0.102 207.46.144.188 2834 80 [2004.05.19 - 12:15:20.718]

E qSó@ €…šÀ¨ fÏ.•¼

P‚X {ÈEPDpÑ¼ GET /ms.htm HTTP/1.1

Connection: Keep-Alive

Host: www.microsoft.com

TCP 1102 207.46.144.188 192.168.0.102 80 2834 [2004.05.19 - 12:15:20.843]

E N¢¬@ nEÏ.•¼À¨ f P

{ÈE‚XIPÿ¶jà HTTP/1.1 200 OK

Cache-Control: max-age=60

Content-Length: 669

Content-Type: text/html

Last-Modified: Thu, 11 Jul 2002 17:05:42 GMT

Accept-Ranges: bytes

ETag: "be61bb30fd28c21:27b"

Server: Microsoft-IIS/6.0

P3P: CP="ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo OUR SAMo CNT COM INT NAV ONL PHY PRE PUR UNI"

X-Powered-By: ASP.NET

Date: Wed, 19 May 2004 16:15:16 GMT

<!--TOOLBAR_START-->

<!--TOOLBAR_EXEMPT-->

<!--TOOLBAR_END-->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

<HTML>

<HEAD>

<META HTTP-EQUIV="Refresh" CONTENT="0; URL=/">

<TITLE>Microsoft Corporation -- Where Do You Want to Go Today?</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000">

If your browser can't handle redirect, please click here

</BODY>

</HTML>

Request Message

Response Message

headers

message body

method

25Table of Contents

Typical HTTP Transaction

◼ Client browser finds a machine address from an internet
Domain Name Server (DNS).

◼ Client and Server open TCP/IP socket connection.
◼ Server waits for a request.
◼ Browser sends a verb and an object:

◼ GET XYZ.HTM or POST form
◼ If there is an error server can send back an HTML-

based explanation.
◼ Server applies headers to a returned HTML file and delivers

to browser.
◼ Client and Server close connection.

◼ It is possible for the client to request the connection
stay open with HTTP 1.1.

29Table of Contents

HTTP Methods

◼ GET request-URI HTTP/1.1

◼ Retrieve entity specified in request-URI as body of response message

◼ POST request-URI HTTP/1.1

◼ Sends data in message body to the entity specified in request-URI

◼ PUT request-URI HTTP/1.1

◼ Sends entity in message body to become newly created entity specified
by request-URI

◼ HEAD request-URI HTTP/1.1

◼ Same as GET except the server does not send specified entity in
response message

◼ DELETE request-URI HTTP/1.1

◼ Request to delete entity specified in request-URI.

◼ TRACE request-URI HTTP/1.1

◼ Request for each host node to report back

30Table of Contents

GET /default.asp HTTP/1.0

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Connection: Keep-Alive

If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET

Blank line

31Table of Contents

Multipurpose Internet Mail Extensions (MIME)
skip to HTTP Response

◼ Defines types of data/documents

◼ text/plain

◼ text/html

◼ image/gif

◼ image/jpeg

◼ audio/x-pn-realaudio

◼ audio/x-ms-wma

◼ video/x-ms-asf

◼ application/octet-stream

32Table of Contents

Request Message

request methods:

DELETE, GET, HEAD, POST,

PUT, TRACE

GET /pub/index.html HTTP/1.0

Date: Wed, 20 Mar 2002 10:00:02 GMT

Pragma: no-cache

From: amer@udel.edu

User-Agent: Mozilla/4.03

request line

headers

blank line

body

33Table of Contents

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response
skip to Programming the Web

HTTP version Status code Reason phrase Headers

Data

35Table of Contents

Status Codes

200 OK

201 Created

202 Accepted

204 No Content

301 Moved Permanently

302 Moved Temporarily

304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

Classes:

1xx: Informational - not used, reserved for future

2xx: Success - action was successfully received, understood,
and accepted

3xx: Redirection - further action needed to complete request

4xx: Client Error - request contains bad syntax or cannot be fulfilled

5xx: Server Error - server failed to fulfill an apparently valid request

39Table of Contents

Web Processing Models

◼ HyperText Markup Language (HTML)

◼ Web of linked documents

◼ Unlimited scope of information content

◼ HyperText Transfer Protocol (HTTP)

◼ Universal access

◼ HTTP is a "request-response" protocol specifying that a client will
open a connection to server then send request using a very specific
format. Server will then respond and close connection.

◼ Graphical Browser Client

◼ Sophisticated rendering makes authoring simpler

◼ HTML File Server

◼ Using HTTP, Interprets request, provides appropriate response,
usually a file in HTML format

41Table of Contents

42Table of Contents

43Table of Contents

Extension - Cascading Style Sheets

◼ Help to separate content from presentation

◼ Defines styles using C-structure like
notation:

◼ body { font-family: tahoma; font-size:
medium; }
◼ may apply to specific tags, as above

◼ .notice { color: red; font-size: large; }
◼ defines a class called notice

◼ …

◼ by default can be applied to any tag

Extension - JavaScript

◼ Help separate content from behavior

◼ Support dynamic presentation using

JavaScript code sent to the browser

◼ <script type=“text/javascript”

src=“js/TopMenu.js”></script>

45Table of Contents

46Table of Contents

47Table of Contents

Programming The Web

48Table of Contents

Web Programming Model

◼ Packaged functionality

◼ Web server supports default and user
supplied controls

◼ Dynamic content display

◼ ASP, JSP generates HTML using server
data

◼ Browser interprets client side scripts

◼ Machine-to-Machine

◼ Web services provide RPC interface

49Table of Contents

Programming the Web

◼ Client-Side Programming

◼ JavaScript

◼ Dynamic HTML

◼ Can modify html document using scripts sent from
server and interpreted by client.

◼ .Net controls – need permissions

◼ Server-Side Programming

◼ ASP script

◼ Server components

◼ C# code-behind

◼ ADO

◼ Web controls used on ASPX pages

◼ Web services

50Table of Contents

Web Programming – Language Model

Client Side
Server Side

ActiveX

Controls

XHTML

HTML

JavaScript

VBScript

HTML

Controls

Cascading

Style

Sheets

XMLASP generates

JavaScript

C#

WebForms

C# with

Silverlight

51Table of Contents

Programming the Web
Server-Side Code

◼ What is server-side code?
◼ Software that runs on the server, not the client

◼ Receives input from
◼ URL parameters

◼ HTML form data

◼ Cookies

◼ HTTP headers

◼ Can access server-side databases, e-mail servers,
files, mainframes, etc.

◼ Dynamically builds a custom HTML response
for a client

52Table of Contents

Traditional HTML Serving Model

Server

Javascript

CSS

Browser

HTML

Document Object Model
(DOM)

Flow Model

Renderer

http::GET

Box Model

Semantic
Structure

Presentation
styles

Behavior

53Table of Contents

ASP Dynamic Serving Model

Web Server

Server Object Models
Request, Response,
Session, Application,

...

CSS

Javascript

Browser

HTML

Document Object Model
(DOM)

Flow Model

Renderer

http::GET

Box Model

HTML

Relational
Data

Model

ADO

AspPostback è http::POST via HTML::Form submit

54Table of Contents

ASP.NET Serving Model
Web Server

C#
Event

handlers

CSS

Javascript

Browser

HTML

Document Object Model
(DOM)

Flow Model

Renderer

http::GET

Box Model

HTML

Relational
Data

Model

Asp Page
Model

Control
Model

ADO.Net

Aspx

Server Object Models
Request, Response,
Session, Application,

...

Postback è http::POST via Javascript event handler from a Form control

55Table of Contents

Programming the Web
Server-Side Code

◼ Why server-side code?

◼ Accessibility

◼ You can reach the Internet from any browser, any device,
any time, anywhere

◼ Manageability

◼ Does not require distribution of application code

◼ Easy to change code

◼ Security

◼ Source code is not exposed

◼ Once user is authenticated, can only allow certain actions

◼ Scalability

◼ Web-based 3-tier architecture can scale out

56Table of Contents

Three Tier Architecture

◼ Client Tier

◼ Presentation layer

◼ Client UI, client-side scripts, client specific application logic

◼ Server Tier

◼ Application logic, server-side scripts, form handling, data requests

◼ Data Tier

◼ Data storage and access

client
presentation layer

server
application logic

server
data access

57Table of Contents

Client Computer

Browser

Windows 2003 Server

Internet

Information

Server

HTML File

CGI Application

written in Perl

Internet

Services API

(ISAPI)

DLL created

with C++

HTML

HTML

ISAPI calls

and

notifications

HTTP

Client/Server - Current Web Model

FTP Client FTP Server Files of any TypeFTP

Script

Engine

Renderer

htm, txt, jpg,

bmp, doc, vsd

Active Data

Object (ADO)

SQL

Server

Active

Server

Pages (ASP)

Script

Engine
VBScript,

JavaScript

Legacy

Applications

ISAPI calls

and

notifications

.Net Controls,

Java Applets
CAB

Web

Services

CLR
C#, VB

58Table of Contents

.Net Controls

◼ The model of previous slide is very powerful!

◼ A browser that knows nothing about some sophisticated
server-side processing can take advantage of that by
downloading a .Net control that encapsulates all the
intelligence necessary to work with the server.

◼ Similarly, a browser can be given new processing
capabilities, simply by loading a local web page that
contains controls with the desired abilities.

◼ Note that web page scripts do the same thing, only not
quite so efficiently, and often with limitations on
processing capabilities.

59Table of Contents

Displaying ActiveX Controls on a Web Page

Here is an example of an object tag and
attributes for inserting a control on a Web page.

<OBJECT CLASSID="clsid:FC25B780-75BE-11CF-8B01-444553540000“
CODEBASE="/ie/download/activex/iechart.ocx" ID=chart1
WIDTH=400 HEIGHT=200
ALIGN=center HSPACE=0 VSPACE=0

>
<PARAM NAME="BackColor" value="#ffffff“>
<PARAM NAME="ForeColor" value="#0000ff">
<PARAM NAME="url" VALUE="/ie/controls/chart/mychart.txt“>

</OBJECT>

60Table of Contents

61Table of Contents

Browser Object Model

◼ Window
◼ browser window

◼ Document
◼ current HTML page

◼ Form
◼ a form holds controls
◼ often used to submit data to server

◼ Frame
◼ frame in browser window

◼ Location
◼ Location of current web page
◼ URL, domain name, port, path, …

◼ Navigator
◼ Browser, itself

◼ History

62Table of Contents

Browser Object Model

Window Frame

Document

Link

Anchor

Form ElementLocation

Navigator

Script

History

63Table of Contents

Some Examples

◼ Basic HTML pages

◼ Example #1

../../../Documents and Settings/Administrator/Local Settings/Temporary Internet Files/Content.IE5/M1XI7EPG/webpageExamples/EX1.HTM

64Table of Contents

Server Object Model

◼ Application Object

◼ Data sharing and locking across clients

◼ Request Object

◼ Extracts client data and cookies from HTTP request

◼ Reponse Object

◼ Send cookies or call Write method to place string in
HTML output

◼ Server Object

◼ Provides utility methods

◼ Session Object

◼ If browser supports cookies, will maintain data between
page loads, as long as session lasts.

65Table of Contents

Server Components
skip to Security Issues

◼ Ad Rotator – rotates advertisements

◼ Browser Capabilities – determines type

◼ Database Access

◼ Active Data Objects (ADO) provide common interface to
a variety of data sources

◼ Content Linking

◼ Creates list of web pages

◼ File Access Component

◼ Provides access to server files from scripts

66Table of Contents

Server Object Model

Application
Object

Ad Rotator
Component

Active Data Object
Component

Content Linker
Component

Browser Capabilities
Component

Response
Object

Request
Object

Server
Object

Session
Object

File Access
Component

67Table of Contents

Server Side Programming with ASP

◼ An Active Server Page (ASP) consists of
HTML and script.

◼ HTML is sent to the client “as-is”

◼ Script is executed on a server to dynamically
generate more HTML to send to the client.

◼ Since it is generated dynamically, ASP can
tailor the HTML to the context in which it
executes, e.g., based on time, data from
client, current server state, etc.

68Table of Contents

69Table of Contents

70Table of Contents

Server Side Programming with Asp.Net

◼ An Asp.Net application consists of:

◼ Design Time:
◼ A form with web controls

◼ C# code behind event handlers

◼ Run-Time:
◼ Form is translated into an HTML form

◼ Web controls become HTML elements with Javascript
event handlers that postback to the server.

◼ Asp.Net model makes control data available as
properties of a Page class, transported from browser
to server in a “hidden view-state”.

71Table of Contents

72Table of Contents

ISAPI – Server Side Extensions

◼ Server Extensions work like CGI scripts to provide server-side
processing, but they are DLLs, which reside in the memory space of
the HTTP server.

◼ This is an enormous performance advantage over CGI extensions
which need to spawn a new process each time they are run.

◼ The extension DLL exports HttpExtensionProc(), which is called by
IIS when the user request asks for the extension processing.

◼ Active Server Page (ASP) scripts and (Asp.Net) C# code are easier
ways to accomplish the same thing. One would expect the ASP
script or C# to be faster than CGI but slower than an ISAPI
extension.

73Table of Contents

Using Controls and Applets

◼ We’ve already seen how to include an
ActiveX control on a web page.

◼ Now let’s see how to do that for a Java
Applet:

◼ Java Applet - Sprites

../../../Documents and Settings/Administrator/Local Settings/Temporary Internet Files/Content.IE5/M1XI7EPG/webpageExamples/sprites animation - no source/sprites.html

74Table of Contents

Including Java Applet
<applet code=sprites.class width=700 height=125>

<!-- registration code to disable the floating -->

<!-- sign within the program panel and 5-min connection -->

<param name=regcode value=99999999>

<!-- frames per second -->

<param name=fps value=15>

<!-- background color -->

<param name=bgcolor value="185 235 255">

<!-- border width (0 = no border) -->

<param name=border value=3>

<!-- link address when mouse is clicked -->

<param name=url value="http://www.thejmaker.com/">

<!-- number of menu items -->

<param name=total value=5>

<!-- control of individual sprites -->

<!-- where | seperates sprite filename, start x and y, speed x and y, wrap-around option -->

<param name=menu0 value="sprite0.gif|0 30|1 0|1">

<param name=menu1 value="sprite1.gif|150 35|-1 0|0">

<param name=menu2 value="sprite2.gif|150 45|-3 0|0">

<param name=menu3 value="sprite3.gif|0 40|2 0|1">

<param name=menu4 value="sprite4.gif|100 3|-5 0|0">

</applet>

75Table of Contents

Security Issues

◼ Threats
◼ Data integrity

◼ code that deletes or modifies data

◼ Privacy

◼ code that copies confidential data and makes it
available to others

◼ Denial of service

◼ code that consumes all of CPU time or disk memory.

◼ Elevation of privilege

◼ Code that attempts to gain administrative access

76Table of Contents

77Table of Contents

Protections

◼ Least privilege rule:
◼ Use the technology with the fewest capabilities

that gets the job done.

◼ Digital signing
◼ Who are you?

◼ Security zones
◼ Trusted and untrusted sites

◼ Secure sockets layer (SSL)
◼ Transport layer security (TLS)
◼ Encryption

78Table of Contents

Extending The Web

79Table of Contents

Current Extensions

◼ Describe data with XML

◼ Extend HTML into XHTML

◼ Separate style from content with CSS

◼ Cascading style sheets

◼ Can be included from a file to give uniform
style of pages and documents

◼ Document Object Model – DOM

◼ Defines a scripting interface

80Table of Contents

The Extensible Web

◼ Some recent W3C Technologies

◼ www.w3.org/2003/Talks/0521-
BudapestW3CTrack-IH/6.html

◼ www.w3.org/2003/Talks/0521-
BudapestW3CTrack-IH/23.html

http://www.w3.org/2003/Talks/0521-BudapestW3CTrack-IH/6.html
http://www.w3.org/2003/Talks/0521-BudapestW3CTrack-IH/23.html

81Table of Contents

Areas of Exploration

◼ XML - Universal Data Services

◼ TVWeb - merger of features

◼ MathML - Mathematical Markup Language

◼ RDF - Resource Description Framework

◼ Accessibility - for the handicapped

◼ SMIL - Synchronized Multimedia Integration Language

◼ Internationalization

◼ Speech

82Table of Contents

People in the Web

◼ Web Development
◼ Web server, HTTP

◼ Tim Berners-Lee, Robert Cailiau

◼ Mosaic web browser
◼ Marc Andreessen

◼ Internet
◼ TCP/IP protocol

◼ Vinton Cerf, Robert Kahn

◼ Internet flow control
◼ Larry Roberts

http://www.networkcomputing.com/1119/1119f1people_1.html
http://livinginternet.com/w/wi_lee.htm
http://livinginternet.com/w/wi_mosaic.htm
http://global.mci.com/us/enterprise/insight/cerfs_up/
http://livinginternet.com/i/ii_kahn.htm
http://livinginternet.com/i/ii_roberts.htm

83Table of Contents

References

◼ World Wide Web Consortium

◼ Excellent Tutorial Papers, standards

◼ Source of several slides used here

◼ Mark Sapposnek

◼ webdev.htm

◼ Tutorials

◼ Web developer’s links

◼ Web designer’s links

◼ Tech details links

◼ XHTML Black Book, Steven Holzner, Coriolis, 2000

◼ Aging but comprehensive treatment of HTML, XHTML, JavaScript

◼ Web Developers Virtual Library

◼ More tutorials

http://www.w3c.org/
../../../Documents and Settings/Administrator/Local Settings/Temporary Internet Files/Content.IE5/M1XI7EPG/Sapposnek_Introduction.ppt
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/webdev.htm
http://www.wdvl.com/Authoring/Tools/Tutorial

84Table of Contents

End of Presentation

