
Threads and Thread Synchronization
for

Win32 and MFC

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2005

2

Introduction

 These notes are concerned with Win32 threads and, at the end,
with MFC wrapped threads.

 In order to understand how threads work, we will quickly
examine the Win32 API and some of its significant objects.

3

Win32 API

 Creating and supporting windows:
– defining, creating, destroying, and setting the style of windows

– writing text and graphics

– windows menus and controls

 Files and directories:
– creating, opening, reading, and writing files

– searching files and directories

 Registry
– writing information into the registry

 Timers

 Processes, threads, and fibers
– Creating and terminating

 Errors and Exception handling

 Dynamic link libraries
– Loading, creating, and accessing data

4

Handles and Objects

 An (operating system) object is a data structure that represents
a system resource, e.g., file, thread, bitmap.

 An application does not directly access object data or the
resource that an object represents. Instead the application
must acquire an object handle which it uses to examine or
modify the state of the system resource.

 Each handle refers to an entry in an internal object table that
contains the address of a resource and means to identify the
resource type.

5

Handles and Objects (continued)

 The win32 API provides functions which:

– create an object

– get an object handle

– get information about the object

– set information about the object

– close the object handle

– destroy an object

 Objects fall into one of three categories:

– kernel objects used to manage memory, process and thread execution,
and inter-process communication

– user objects, used to support window management

– gdi objects, supporting graphics operations

6

Examples of Win32 Objects

 Windows kernel Objects: kernel32.dll

– Events

– Files

– Memory-Mapped Files

– Mailslots and Pipe objects

– Mutex and Semaphore objects

– Processes and Threads

 GDI Objects: gdi32.dll

– pens and brushes

– fonts

– Bitmaps

 User Objects: user32.dll

– windows

– hooks

– menus

– mouse cursors

7

Kernel Objects

 Most of the win32 functions you use to create, synchronize, and
monitor threads rely on kernel objects.

 Kernel objects are operating system resources like processes,
threads, events, mutexes, semaphores, shared memory, and
files.

 Kernel objects have security attributes and signaled state.

8

Signaled Object State

 Except for files, kernel objects are opaque. You don’t have access to their
internal structure.

 All kernel objects have a signaled state. They are always either signaled or
nonsignaled.

 An object that is in the signaled state will not cause a thread that is waiting on
the object to block.

 A kernel object that is not in the signaled state will cause any thread that waits
on that object to block until the object again becomes signaled.

 Access to a kernel object is controlled by security attributes

 Except when creating or opening a kernel object, you refer to it by a HANDLE
rather than a name. The HANDLE is returned by the function that creates or
opens the object.

 Kernel object names are system-wide resources and can be used by one process
to create and another process to open. HANDLEs are unique and have meaning
only within a single process.

 Kernel objects are reference counted. Objects are destroyed only when there
are no outstanding references to that object.

9

Threads

• A thread is a path of execution through a program’s code, plus
a set of resources (stack, register state, etc) assigned by the
operating system.

• A thread lives in one and only one process. A process may have
one or more threads.

• Each thread in the process has its own call stack, but shares
process code and global data with other threads in the process.

• Pointers are process specific, so threads can share pointers.

10

Thread vs. Process

 A Process is inert. A process never executes anything; it is
simply a container for threads.

 Threads run in the context of a process. Each process has at
least one thread.

 A thread represents a path of execution that has its own call
stack and CPU state.

 Threads are confined to context of the process that created
them.

– A thread executes code and manipulates data within its process’s
address space.

– If two or more threads run in the context of a single process they
share a common address space. They can execute the same code
and manipulate the same data.

– Threads sharing a common process can share kernel object handles
because the handles belong to the process, not individual threads.

11

Threads vs. Process

Process

Global Variables

Process Heap

Process Environment Strings

Thread1 Thread2 Thread3

Thread1 Stack Thread2 Stack Thread3 Stack

12

Starting a Process

 Every time a process starts, the system creates a primary
thread.

– The thread begins execution with the C/C++ run-time library’s
startup code.

– The startup code calls your main or WinMain and execution
continues until the main function returns and the C/C++ library
code calls ExitProcess.

13

Scheduling Threads

 Windows XP, 2000, NT and Win98 are preemptive multi-tasking
systems. Each task is scheduled to run for some brief time
period before another task is given control of CPU.

 Threads are the basic unit of scheduling on current Win32
platforms. A thread may be in one of three possible states:

– running

– blocked or suspended, using virtually no CPU cycles

– ready to run, using virtually no CPU cycles

14

Scheduling Threads (continued)

 A running task is stopped by the scheduler if:
– it is blocked waiting for some system event or resource

– its time time slice expires and is placed back on the queue of ready
to run threads

– it is suspended by putting itself to sleep for some time

– it is suspended by some other thread

– it is suspended by the operating system while the OS takes care of
some other critical activity.

 Blocked threads become ready to run when an event or
resource they wait on becomes available.

 Suspended threads become ready to run when their sleep
interval has expired or suspend count is zero.

15

Scheduling Threads

Blocked and Suspended

TCB

TCB

TCB

TCB

TCB

General Registers

Stack Pointer

Instruction Pointer

FPU Contents

PCB pointer

Priority

Quantum (Time-Slice) remaining

Other Thread Specific Data

Thread Context Block

Address Space Information

Working Set Information

Other Process Specific State

Maintains:

 File and Heap Mappings

 Allocated Handles

Process Context Block

readied

ru
n b

lo
cke

d
 o

r su
sp

e
n
d
e
d

Ready to Run

Highest TCB TCB TCB

Normal TCB

Lowest TCB TCB

16

Benefits of using Threads

 Keeping user interfaces responsive even if required processing
takes a long time to complete.
– handle background tasks with one or more threads

– service the user interface with a dedicated thread

 Your program may need to respond to high priority events. In
this case, the design is easier to implement if you assign that
event handler to a high priority thread.

 Take advantage of multiple processors available for a
computation.

 Avoid low CPU activity when a thread is blocked waiting for
response from a slow device or human by allowing other
threads to continue.

17

More Benefits

 Support access to server resources by multiple concurrent
clients.

 Improve robustness by isolating critical subsystems on their own
threads of control.

 For simulations dealing with several interacting objects the
program may be easier to design by assigning one thread to
each object.

18

Using Threads to Avoid Blocking

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

Non-Blocking Communication in Asynchronous System

FIFO queue

processing

thread

receiver

thread

19

Demonstration Programs

 ProcessDemoWin32

– Demonstrates creation of Win32 process

 dialogDemo Folder

– Demonstrates creation of UI and Worker threads

20

Potential Problems with Threads

 Conflicting access to shared memory
– one thread begins an operation on shared memory, is suspended, and

leaves that memory region incompletely transformed

– a second thread is activated and accesses the shared memory in the
corrupted state, causing errors in its operation and potentially errors in the
operation of the suspended thread when it resumes

 Race Conditions occur when:
– correct operation depends on the order of completion of two or more

independent activities

– the order of completion is not deterministic

 Starvation
– a high priority thread dominates CPU resources, preventing lower priority

threads from running often enough or at all.

21

Problems with Threads (continued)

 Priority inversion

– a low priority task holds a resource needed by a higher priority
task, blocking it from running

 Deadlock

– two or more tasks each own resources needed by the other
preventing either one from running so neither ever completes and
never releases its resource

22

UI and Worker Threads

 User Interface (UI) threads create windows and process
messages sent to those windows

 Worker threads receive no direct input from the user.

– Worker threads must not access a window’s member
functions. This will often cause a program crash.

– Worker threads communicate with a program’s windows by calling
the Win32 API PostMessage and SendMessage functions.

• Often a program using worker threads will create user defined
messages that the worker thread passes to a window to indirectly call
some (event-handler) function. Inputs to the function are passed via
the message’s WPARAM and LPARAM arguments.

• This is illustrated in the DialogDemo program.

23

Creating Win32 Threads

 HANDLE hThrd =
(HANDLE)_beginthread(ThreadFunc, 0, &ThreadInfo);

 ThreadFunc – the function executed by the new thread

void _cdecl ThreadFunc(void *pThreadInfo);

 pThreadInfo – pointer to input parameters for the thread

 For threads created with _beginthread the thread function,
ThreadFunc, must be a global function or static member function
of a class. It can not be a non-static member function.

24

Note

 The Win32 API provides a CreateThread(…) function.

 You should not use CreateThread(…) with either C or C++ as it
does not properly initialize all the C and C++ libraries for that
thread.

 The functions _beginthread(…) and _beginthreadex(…) were
designed specifically to work correctly with these libraries.

25

Synchronization

 A program may need multiple threads to share some data.

 If access is not controlled to be sequential, then shared data
may become corrupted.

– One thread accesses the data, begins to modify the data, and then
is put to sleep because its time slice has expired. The problem
arises when the data is in an incomplete state of modification.

– Another thread awakes and accesses the data, that is only partially
modified. The result is very likely to be corrupt data.

 The process of making access serial is called serialization or
synchronization.

26

Wait For Objects

 WaitForSingleObject makes one thread wait for:
– Termination of another thread

– An event

– Release of a mutex

– Syntax: WaitForSingleObject(objHandle, dwMillisec)

 WaitForMultipleObjects makes one thread wait for the
elements of an array of kernel objects, e.g., threads, events,
mutexes.
– Syntax:

WaitForMultipleObjects(nCount, lpHandles, fwait, dwMillisec)

– nCount: number of objects in array of handles

– lpHandles: array of handles to kernel objects

– fwait: TRUE => wait for all objects, FALSE => wait for first object

– dwMillisec: time to wait, can be INFINITE

27

Process Priority

 IDLE_PRIORITY_CLASS

– Run when system is idle

 NORMAL_PRIORITY_CLASS

– Normal operation

 HIGH_PRIORITY_CLASS

– Receives priority over the preceding two classes

 REAL_TIME_PRIORITY_CLASS

– Highest Priority

– Needed to simulate determinism

28

Thread Priority

 You use thread priority to balance processing performance
between the interfaces and computations.
– If UI threads have insufficient priority the display freezes while

computation proceeds.

– If UI threads have very high priority the computation may suffer.

– We will look at an example that shows this clearly.

 Thread priorities take the values:
– THREAD_PRIORITY_IDLE

– THREAD_PRIORITY_LOWEST

– THREAD_PRIORITY_BELOW_NORMAL

– THREAD_PRIORITY_NORMAL

– THREAD_PRIORITY_ABOVE_NORMAL

– THREAD_PRIORITY_HIGHEST

– THREAD_PRIORITY_TIME_CRITICAL

29

Thread Synchronization

 Synchronizing threads means that every access to data shared
between threads is protected so that when any thread starts an
operation on the shared data no other thread is allowed access
until the first thread is done.

 The principle means of synchronizing access to shared data
within the Win32 API are:
– Interlocked increments

• only for incrementing or decrementing integers

– Critical Sections
• Good only inside one process

– Mutexes
• Named mutexes can be shared by threads in different processes.

– Events
• Useful for synchronization as well as other event notifications.

30

Interlocked Operations

 InterlockedIncrement increments a 32 bit integer as an atomic
operation. It is guaranteed to complete before the incrementing
thread is suspended.

long value = 5;
InterlockedIncrement(&value);

 InterlockedDecrement decrements a 32 bit integer as an atomic
operation:

InterlockedDecrement(&value);

31

Win32 Critical Sections

 Threads within a single process can use critical sections to ensure
mutually exclusive access to critical regions of code. To use a critical
section you:
– allocate a critical section structure

– initialize the critical section structure by calling a win32 API function

– enter the critical section by invoking a win32 API function

– leave the critical section by invoking another win32 function.

– When one thread has entered a critical section, other threads requesting
entry are suspended and queued waiting for release by the first thread.

 The win32 API critical section functions are:
– CRITICAL_SECTION critsec

– InitializeCriticalSection(&critsec)

– EnterCriticalSection(&critsec)

– TryEnterCriticalSection(&critsec)

– LeaveCriticalSection(&critsec)

– DeleteCriticalSection(&critsec)

32

Win32 Mutexes

 Mutually exclusive access to a resource can be guaranteed through the
use of mutexes. To use a mutex object you:

– identify the resource (section of code, shared data, a device) being shared
by two or more threads

– declare a global mutex object

– program each thread to call the mutex’s acquire operation before using the
shared resource

– call the mutex’s release operation after finishing with the shared resource

 The mutex functions are:

– hMutex = CreateMutex(0,FALSE,0);

– WaitForSingleObject(hMutex,INFINITE);

– WaitForMultipleObjects(count,MTXs,TRUE,INFINITE);

– ReleaseMutex(hMutex);

– CloseHandle(hMutex);

33

Win32 Events

 Events are objects which threads can use to serialize access to
resources by setting an event when they have access to a resource and
resetting the event when through. All threads use WaitForSingleObject
or WaitForMultipleObjects before attempting access to the shared
resource.

 Unlike mutexes and semaphores, events have no predefined semantics.
– An event object stays in the nonsignaled stated until your program sets its

state to signaled, presumably because the program detected some
corresponding important event.

– Auto-reset events will be automatically set back to the non-signaled state
after a thread completes a wait on that event.

– After a thread completes a wait on a manual-reset event the event will
return to the non-signaled state only when reset by your program.

34

Win32 Events (continued)

 Event functions are:

– HANDLE hEvent = CreateEvent(0,FALSE,TRUE,0);

– OpenEvent – not used too often

– SetEvent(hEvent);

– ResetEvent(hEvent);

– PulseEvent – not used too often

– WaitForSingleEvent(hEvent,INFINITE);

– WaitForMultipleEvents(count,Events,TRUE,INFINITE);

35

More Demonstration Programs

 thread problems folder: CSE681\code\threadproblems

– Illustrates deadlock, race conditions, sharing conflicts, and
starvation

 Synch folder: CSE681\code\synch

– Demonstrates synchronization using Critical Sections, Mutexes, and
Events.

– Also illustrates synchronizing two or more processes with named
mutexes.

36

MFC Support for Threads

 CWinThread is MFC’s encapsulation of threads and
the Windows 2000 synchronization mechanisms, e.g.:

– Events

– Critical Sections

– Mutexes

– Semaphores

37

Creating Worker Threads in MFC

 AfxBeginThread – function that creates a thread:

CWinThread *pThread
= AfxBeginThread(ThreadFunc, &ThreadInfo);

 ThreadFunc – the function executed by the new thread.

AFX_THREADPROC ThreadFunc(LPVOID pThreadInfo)

 LPVOID pThreadInfo – a pointer to an arbitrary set of input
parameters, often created as a structure.
– We create a pointer to the structure, then cast to a pointer to void

and pass to the thread function.

– Inside the thread function we cast the pointer back to the structure
type to extract its data.

38

Creating UI Threads in MFC

 Usually windows are created on the application’s main thread.

 You can, however, create windows on a secondary UI thread.
Here’s how you do that:

– Create a class, say CUIThread, derived from CWinThread.

– Use DECLARE_DYNCREATE(CUIThread) macro in the class
declaration.

– Use IMPLEMENT_DYNCREATE(CUIThread, CWinThread) in
implementation.

– Create windows

– Launch UI thread by calling:
CWinThread *pThread =

AfxBeginThread(RUNTIME_CLASS(CUIThread));

39

Suspending and Running Threads

 Suspend a thread’s execution by calling SuspendThread. This
increments a suspend count. If the thread is running, it becomes
suspended.

pThread -> CWinThread::SuspendThread();

 Calling ResumeThread decrements the suspend count. When the count
goes to zero the thread is put on the ready to run list and will be
resumed by the scheduler.

pThread -> CWinThread::ResumeThread();

 A thread can suspend itself by calling SuspendThread. It can also
relinquish its running status by calling Sleep(nMS), where nMS is the
number of milliseconds that the thread wants to sleep.

40

Thread Termination

 ThreadFunc returns

– Worker thread only

– Return value of 0 a normal return condition code

 WM_QUIT

– UI thread only

 AfxEndThread(UINT nExitCode)

– Must be called by the thread itself

 ::GetExitCode(hThread, &dwExitCode)

– Returns the exit code of the last work item (thread, process) that
has been terminated.

41

Thread Safety

 Note that MFC is not inherently thread-safe. The developer
must serialize access to all shared data.

 MFC message queues have been designed to be thread safe.
Many threads deposit messages in the queue, the thread that
created the (window with that) queue retrieves the messages.

 For this reason, a developer can safely use PostMessage and
SendMessage from any thread.

 All dispatching of messages from the queue is done by the
thread that created the window.

 Also note that Visual C++ implementation of the STL library is
not thread-safe, and should not be used in a multi-threaded
environment. I hope that will be fixed with the next release of
Visual Studio, e.g., Visual Studio.Net.

42

MFC Critical Sections

 A critical section synchronizes access to a resource shared
between threads, all in the same process.

– CCriticalSection constructs a critical section object

– CCriticalSection::Lock() locks access to a shared resource for a
single thread.

– CCriticalSection::Unlock() unlocks access so another thread may
access the shared resource

CCriticalSection cs;
cs.Lock();

// operations on a shared resource, e.g., data, an iostream, file
cs.Unlock();

43

MFC Mutexes

 A mutex synchronizes access to a resource shared between two
or more threads. Named mutexes are used to synchronize
access for threads that reside in more than one process.
– CMutex constructs a mutex object

– Lock locks access for a single thread

– Unlock releases the resource for acquisition by another thread

CMutex cm;
cm.Lock();

// access a shared resource
cm.Unlock();

– CMutex objects are automatically released if the holding thread
terminates.

44

MFC Events

 An event can be used to release a thread waiting on some
shared resource (refer to the buffer writer/reader example in
pages 1018-1021).

 A named event can be used across process boundaries.

 CEvent constructs an event object.

 SetEvent() sets the event.

 Lock() waits for the event to be set, then automatically resets it.

CEvent ce;
:

ce.Lock(); // called by reader thread to wait for writer
:

ce.SetEvent(); // called by writer thread to release reader

45

CSingleLock & CMultiLock

 CSingleLock and CMultiLock classes can be used to wrap critical
sections, mutexes, events, and semaphores to give them
somewhat different lock and unlock semantics.

CCriticalSection cs;
CSingleLock slock(cs);
slock.Lock();

// do some work on a shared resource
slock.Unlock();

This CSingleLock object will release its lock if an exception is
thrown inside the synchronized area, because its destructor is
called. That does not happen for the unadorned critical section.

