
Structural Models for Large Software Systems

Excerpts from Research Presentation

by

Murat Kahraman Gungor
Ph.D. Candidate

Advisor: James W Fawcett, Ph.D.

4

Introduction

▪ Software is expensive.

▪ Software projects typically consist of many parts.

▪ Interdependency between parts of a project is
necessary.

▪ However, excessive dependency reduces:
▪ Testability

▪ Maintainability

▪ Reusability

▪ Understandability

▪ Monitoring current state of a project is critically
important.

5

Goals of this Research

▪ Understand how to detect problems in large software
development projects.

▪ Generate algorithms and methods to diagnose specific
structural flaws.

▪ Provide tools needed to support:
▪ Analysis

▪ Project monitoring

▪ Explore possible corrective procedures and simulate
their application, monitoring improvements in observed
defects

6

A Real System

▪ Open Source Mozilla Project

▪ Browser

▪ Grew out of Netscape Navigator

▪ We studied Mozilla, Windows build, version 1.4.1

▪ This code base was abandoned.

▪ Great opportunity to investigate why code fails.

▪ After surviving serious problems, some of this code migrated

into Firefox, an obviously successful implementation.

▪ Windows build consists of 6193 files – for a browser!

7

Dependencies in GKGFX
Mozilla Rendering Library – One of many libraries

Smallest disks
are single files

Large disks are
mutually dependent
files, strong
components of the
dependency graph

Lines indicate
dependency

8

GKGFX Component Internals

▪ Here are the internal

dependencies for largest

strong component.

▪ We show, in the dissertation

document using Product Risk

Model, that high density of

dependencies within a strong

component is a serious design

flaw.

What’s the problem? We don’t know. With
DepAnal and DepView, we find out.

9

This is Mozilla, Version 1.4.1, Windows Build
Plot for GKGFX Library shows some very large mutual dependencies

▪ DepView shows that the
GKGFX Library does
indeed have significant
structural problems, as
predicted by the
preceding views.

▪ Note that these
problems, made visible
by our tools, are normally
invisible!

DepView provides

precise definition of each

strong component.

10

Problem Definition

▪ Dependencies between software files are

essential.

▪ However, dependencies complicate process of

making changes.

▪ Excessive dependency degrades flexibility.

▪ A change may cause new changes in dependent

files.

s

12

Exploring Dependency Structure

▪ The next few slides explain our representation of

dependency

▪ We discuss several kinds of dependencies that will be

important later in the presentation.

s

13Top. Sorted Files

File Dependency Relationships
How to Read

▪ Above shows file dependencies.

▪ Upper right shows another view:

▪ All dots on the vertical line rooted at 3 are files that file

3 depends on. We call this Fan-Out.

▪ Both dots on horizontal line rooted at 14 are files that

depend on 14. We call this Fan-In.

2

13 3

1415 10

11

4,5,6,7,8,9,12

1 After topological sort

Dependency Graph

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Depending Source Code Files

D
e
p

e
n

d
e
d

 U
p

o
n

 S
o

u
rc

e
 C

o
d

e
 F

il
e
s

Most
IndependendDependend

Most

15

14

13

4

11

10

7

5

6

8

9

12

3

2

1

Numbered files

to the right

depend only on

files above

them, but do

not necessarily

depend on

every file

above.

Fan-out

Fan-in

14Top. Sorted Files

Problem: Large Fan-out

▪ Depending on scores of other files (large fan-out) may indicate a lack
of cohesion – the file is taking responsibilities for too many,
perhaps only loosely related, tasks and needs the services of many
other files to manage that.

▪ Numbered files at the left depend only on files above them, but do not
necessarily depend on every file above.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Depending Source Code Files

D
e
p

e
n

d
e
d

 U
p

o
n

 S
o

u
rc

e
 C

o
d

e
 F

il
e
s

Most
IndependendDependend

Most

After topological sort

2

13 3

1415 10

11

4,5,6,7,8,9,12

1

Dependency Graph - Large Fan-out
15

14

13

4

11

10

7

5

6

8

9

12

3

2

1

15

9

13 10

1415 11

12

2,3,4,5,6,7,8

1

Problem: Large Fan-in

▪ High Fan-in is not inherently bad. It implies significant reuse which is
good. However poor quality of the widely used file will be a problem.

▪ High fan-in coupled with low quality creates a high probability for
consequential change. By consequential change we mean a change
induced in a depending file due to a change in the depended upon file

After topological sort Top. Sorted Files

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Depending Source Code Files
D

e
p

e
n

d
e
d

 U
p

o
n

 S
o

u
rc

e
 C

o
d

e
 F

il
e
s

Most
Dependend Independend

Most

Dependency Graph

15

14

13

12

11

10

9

2

3

4

5

6

7

8

1

16

5

6 4

78 3

2

1

Problem: Large Strong Components
Strong component is a set of mutual dependencies

Ideal testing process:

▪ Test those files with no dependencies, then test all files depending only on files
already tested.

▪ For testing, a strong component must be treated as a unit. The larger a strong
component becomes, the more difficult it is to adequately test.

▪ Change management becomes tougher, due to consequential changes to fix
latent errors or performance problems

After topologically sorting, strong

components are expanded

Top. Sorted Files

Strong

Comp.

Size

of SC

with this

size

1 4

4 1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

D epending Library So urce C o de F iles

If there is a dot under the

diagonal, it indicates

there are mutually

dependent f iles.

D e p e n d e n d I n d e p e n d e n

d

Dependency Graph

8

7

6

3

2

5

4

1

Files 2, 3, 4,

and 5 cannot

be ordered.

The order

given is as

good as

possible.

20

Size of bubble
proportional to

number of files in
strong component.

Green lines show Fan-Out of one
file in a large strong component.

Note dependencies both inside and
outside component.

This is Mozilla’s GKGFX Rendering Library
Plot shows some very large mutual dependencies

Our dependency
analyzer tool

▪ This view is
generated by our
tools:

▪ DepAnal

▪ DepView

▪ This library has 598
files.

▪ It shows a file in a
second largest strong
component that
depends on many
other files.

Our interactive
dependency visualizer

21

GKGFX Component Internals

▪ Here are the internal

dependencies for largest

strong component.

▪ We show, in the dissertation

document using Product Risk

Model, that high density of

dependencies within a strong

component is a serious design

flaw.

What’s the problem? Without DepAnal
and DepView, we don’t know.

22

Visibility

▪ The dependencies shown on the previous slide are,
without our tools, invisible.

▪ Developers know only a small part of the dependency
structure based on their own reading of the code. The
rest they may find by observing breakage when they
change something.

▪ Note that Mozilla, 1.4.1 is composed of 6193 files!
Impossible to understand that dependency structure
without effective tools.

23

Is Complex Dependency Really a Problem?

▪ Mozilla was targeted for Apple OSX.10 but Apple
switched to KHTML:

▪ “Apple snub stings Mozilla” – CNET News.com

▪ “Bourdon said Safari engineers looked at size, speed and
compatibility in choosing KHTML.”

▪ "Translated through a de-weaselizer, (Melton's e-mail) says: 'Even
though some of us used to work on Mozilla, we have to admit that
the Mozilla code is a gigantic, bloated mess, not to mention slow,
and with an internal API so flamboyantly baroque that frankly we
can't even comprehend where to begin,'" Zawinski wrote.

▪ http://news.com.com/2163e+snub+stings+Mozilla/2100-1023_3-980492.html

http://news.com.com/2163e+snub+stings+Mozilla/2100-1023_3-980492.html

24

Our Approach

▪ Having seen the previous problems, here is

what we are going to do.

25

Scope of Study

▪ We are not analyzing syntactic correctness of code.

▪ We are not analyzing logical correctness of code.

▪ We are analyzing project code structure.

▪ Our methods and tools are applicable to
C-based procedural and object oriented languages such
as C, C++, C#, Java.

▪ DepAnal and DepView support both C and C++

26

Contributions

▪ Developed Source File Ranking Models
▪ Risk Model,

▪ Reusability Index.

▪ Developed Analysis Methods
▪ Dependency Analyzer (DepAnal): C/C++ static source code dependency

analyzer tool. Able to analyze thousands of files in reasonable time
(Mozilla: 6193 files in approximately 4 hours – dependency and graph
relationships).

▪ Dependency Viewer (DepView) – Interactive visualization of
dependencies among files and components. Provides new views of
complex information.

▪ Designed and conducted an experiment to investigate the impact of
change in one file on other files (results shown later).

▪ Investigated corrective procedures and simulated their application,
monitored improvements in observed defects.

30

Dependency Model

▪ Focus is dependencies between files.
▪ Files are unit of testing and configuration management

▪ Based on types, global functions and variables.
▪ Dependency Model - file A depends on file B if:

▪ A creates and/or uses an instance of a type declared or defined in B

▪ A is derived from a type declared or defined in B

▪ A is using the value of a global variable declared and/or defined in B

▪ A defines a non-constant global variable modified by B

▪ A uses a global function declared or defined in B

▪ A declares a type or global function defined in B

▪ A defines a type or global function declared in B

▪ A uses a template parameter declared in B

▪ Outputs are presented as direct dependencies.
▪ We do not show transitive closure for ease of interpretation – otherwise, too

dense.

▪ Risk model accounts for transitive relationships, in an effective way.

summary

32

Data Gathering and Processing

▪ Figure below is the data gathering and processing flow used during

our analysis of software.

▪ We obtain data in two different granularities:

▪ Strong components.

▪ Individual source files.

Dependency

Views

StrongComponent
(Component Analysis)

RiskCalculator
(Risk Analysis)

DepView
(2D-Drawing)

FileDependency
File Set

Strong Components

0

1

2

3

Internal Metrics

Risk

&

Reusability

DepAnal
(Type Analysis)

summary

33

An Analysis – Mozilla, Version 1.4.1

▪ The Mozilla project is a very large project developing browser tools
for many different platforms.

▪ Win 32 Configuration
▪ Number of executables: 94

▪ Number of dynamic link libraries: 111

▪ Number of static libraries: 303

▪ Number of source files for Win32, v 1.4.1: 6193

▪ Analysis of entire Mozilla project took approximately 4 hours on Dell
Dimension 8300 with 1 G Memory

▪ Can analyze individual libraries – few hundred files – in half hour.

Wow!

36

Fan-in Density
Mozilla GKGFX Library

▪ This histogram shows that significant number of library

source code files have high fan-in, characteristic of a

widely used library.

A library with
this profile
should be given
high priority for
analysis by the
test team and
quality analysts.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 23 24 27 32 33 34 37 38
75

96
10

5
20

1
20

6
0

20

40

60

80

100

120

140

160

180

200

220

1
6
9

1
4
1

9
9

5
5

3
7

2
0 9 9 6 9

1
1 3 4 2 2 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1

Number of Files with Specified Fan-In

F
a

n
-I

n
 S

iz
e

Fan In Size

38

Fan-out Density Mozilla GKGFX library

▪ Large Fan-Out may be symptomatic of weak abstraction. We’ve
show elsewhere that High Fan-Out is correlated with large number
of changes.

There are a

significant

number of

files with

large fan-

out.

0 1 2 3 4 5 6 7 8 9 1
0 1
1 1
2 1

4 1
5 1
6 1
7 1
8 1
9 2
0 2

2

2
5 2

7 2
8

3
5

4
1 4
2

4
8

6
0

0

10

20

30

40

50

60

1
2

3

9
9

9
4

7
2

4
8

4
1

2
0

1
6

1
3

1
4

1
0 9

1
0 4 4 3 2 3 1 1 2 1 2 1 1 1 1 1 1

Number of Files with Specified Fan-Out

F
a
n
-O

u
t
S

iz
e

Fan Out Size

Large fan-out is likely to

imply a lack of cohesion.

Ideally, fan-out should be no

more than a few other files.

39

Summary for High Level Views

▪ High Fan-in implies:

▪ Good reuse.

▪ Large testing effort if we need to make a change in

file with high Fan-In.

▪ High Fan-out implies:

▪ Weak abstraction.

▪ Need for redesign or refactoring of code.

41

5

6 4

78 3

2

1

Problem: Large Strong Components
Strong component is a set of mutual dependencies

Ideal testing process:

▪ Test those files with no dependencies, then test all files depending only on files
already tested.

▪ For testing, a strong component must be treated as a unit. The larger a strong
component becomes, the more difficult it is to adequately test.

▪ Change management becomes tougher, due to con-sequential changes to fix
latent errors or performance problems

After topologically sorting, strong

components are expanded

Top. Sorted Files

Strong

Comp.

Size

of SC

with this

size

1 4

4 10

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

D epending Library So urce C o de F iles

If there is a dot under the

diagonal, it indicates

there are mutually

dependent f iles.

D e p e n d e n d I n d e p e n d e n

d

Dependency Graph

8

7

6

3

2

5

4

1

Files 2, 3, 4,

and 5 cannot be

ordered.

The order

given is the

best we can

achieve.

reminder

42

Analyzing Dependency Matrix
Topological sort gives best test order – important information!

GKGFX 1.4.1 - Expansion of Strong Component

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700
Depending Library Source Files

D
e
p
e
n
d
e

d
 U

p
o
n
 L

ib
.
S

o
u
rc

e
 F

ile
s

High Fan-in

Mutually Dependent Files

(Strong Component)

High Fan-out File

46

GKGFX Component Internals

▪ Here are the internal

dependencies for largest

strong component.

▪ We show, in dissertation

document, using Risk Model,

that high density of

dependencies within a strong

component is a serious design

flaw.

s

47

Expansion of Strong Components

Entire Mozilla Ver. 1.4.1

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Dependency Data
For the Entire Windows-Based Mozilla Build

▪ The plot below is a topological sorting of the dependency graph and then
expanding strong components of the entire Mozilla build for windows.

This plot is so
dense that it is
becoming difficult to
draw conclusions,
but the plot clearly
indicates test
problems for the
whole Mozilla
project.

Size of the strong

component is 325

Lots of libraries

48

So how do we make sense of all this?

▪ We’ve now seen significant problems in the

Mozilla 1.4.1 structure.

▪ How can we find what is the cause of the

problems?

▪ How can we find ways to improve?

49

Product Risk Model

▪ Product Risk Model is a file-rank procedure that
orders the entire system’s file set by increasing
risk.
▪ Provides direct support for management of large

developing code bases.

▪ Indicates where attention should be focused.

▪ Enables developers to observe overall effect of a
particular change (simulation)
▪ Removing global objects, interface insertion.

50

Product Risk Model
Definitions

▪ Importance of a file is based on
the number of other files that
directly or indirectly depended
upon it.

▪ Test Difficulty is the degree of
relative effort required for a file to
be tested based on:

▪ Number of files it is using and its
interconnectedness strength,

▪ Internal implementation quality

1

2 3

4

5 6

7

21

AllCallers

jiji II 1

AllCalled

mmnnn TT

mn

),1[I

),1[T

]1,0[

51

Product Risk Model
Definitions cont’d…

▪ Risk of a file is the product of its importance and test difficulty.

),1(

2

22

2

22

1

1

)(
1

1

)(....)()(
1

1

Nj j

ji

i

N

Niii
i

M

m

N

M

m

M

m

M

m

N

iii TIR x

▪ Implementation Metric Factor

▪ Alpha represents the relative frequency of required consequential changes in

files in the project.

▪ Test difficulty of a file depends not only on its internal implementation quality, but

also on the quality of the files that it depends on.

),1[I),1[T),1[R

M: Boundary metric value

m: Measured metric value

N: Number of metric involved

Small (m/M) is good.

Low I and low T are good

52

Risk Values for Mozilla GKGFX Lib. Files - ver. 1.4.1
Alpha=0.1

1

10

100

1000

10000

100000

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

File Sequence Increasing Risk Order

R
is

k
 V

a
lu

e
s
 (

L
o
g
 s

c
a
le

)
Risk Model Applied
Mozilla GKGFX Library

55

Risk Model Applied
Risk Values with File Names - New Design

New Design DepAnal Product Risk

Alpha Value = 0.165

1
.1

3
1
.4

5
1
.9

6
2
.6

0
2
.6

2
2
.9

4
3
.6

3
3
.8

2
3
.9

5
3
.9

7
4
.1

8
4
.8

1
4
.8

7
6
.4

4
8
.3

9 1
3
.2

0
1
3
.6

4
1
3
.7

4
1
3
.8

9
1
4
.7

9
1
4
.9

7
1
5
.3

8
1
5
.5

1
1
5
.7

3
1
5
.9

5
1
5
.9

5
1
6
.0

1
1
8
.5

4
1
9
.7

3
2
0
.8

4

0

5

10

15

20

25

30

35

40

s
y
n

ta
x
2

.c
p

p

T
O

K
.C

P
P

re
im

p
l2

.h

re
s
ta

c
k
.h

IT
e

s
t.

h

s
y
n

ta
x
2

.h

re
g

e
x
p

r2
.c

p
p

re
g

e
x
p

r2
.h

N
A

V
.H

N
A

V
.C

P
P

T
O

K
.H

F
IL

E
IN

F
O

.H

F
IL

E
IN

F
O

.C
P

P

In
c
lu

d
e

M
n

g
r.

h

In
c
lu

d
e

M
n

g
r.

c
p

p

G
ra

m
m

a
r.

c
p

p

D
e

p
R

e
c
o

rd
e

r.
h

U
ti
lit

ie
s
.h

U
ti
lit

ie
s
.c

p
p

G
ra

m
m

a
r.

h

S
E

M
I.

H

S
E

M
I.

C
P

P

S
c
o

p
e

In
fo

.h

C
o

lle
c
to

r.
h

M
a

in
.c

p
p

D
e

p
R

e
c
o

rd
e

r.
c
p

D
e

p
F

in
d

e
r.

h

D
e

p
F

in
d

e
r.

c
p

p

C
o

lle
c
to

r.
c
p

p

S
c
o

p
e

In
fo

.c
p

p

File Name

R
is

k
 V

a
lu

e

Risk

Importance

Testability

56

Change Impact Factor (αij) Estimation

▪ Goals is to understand the impact of
a change in a software source file to
other source files

▪ What we did?

▪ Designed an experiment,

▪ Described its application,

▪ Showed measured results of the
change impact.

▪ Redesigned DepAnal

▪ The analyzer’s first external release
has 7796 lines of new code,

▪ 5580 of these are code within
functions.

▪ Implementation took three months,
and

▪ 503 changes were recorded.

File D

File FFile E

10

1
DF

File X

10

2
DE

10

0
DX

...

DinchangesTotal

DinchangesbycausedEtochangesialConsequent

10

2
αDE

1

2 3

4

5 6

7

21

AllCallers

jiji II 1

AllCalled

mmnnn TT

57

Results Change Impact Factor

Alpha[Colector.cpp][A file]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1
/3

/0
5

1
1
/7

/0
5

1
1
/1

1
/0

5

1
1
/1

5
/0

5

1
1
/1

9
/0

5

1
1
/2

3
/0

5

1
1
/2

7
/0

5

1
2
/1

/0
5

1
2
/5

/0
5

1
2
/9

/0
5

1
2
/1

3
/0

5

1
2
/1

7
/0

5

1
2
/2

1
/0

5

1
2
/2

5
/0

5

1
2
/2

9
/0

5

1
/2

/0
6

1
/6

/0
6

1
/1

0
/0

6

1
/1

4
/0

6

1
/1

8
/0

6

1
/2

2
/0

6

1
/2

6
/0

6

1
/3

0
/0

6

2
/3

/0
6

2
/7

/0
6

Date

A
lp

h
a
 V

a
lu

e

scopeinfo.h

scopeinfo.cpp

utilities.h

depfinder.cpp

grammar.cpp

grammar.h

collector.h

Alpha[Colector.cpp][A file]
1 Month Period - Past ignored

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
2
/2

3
/0

5

1
2
/2

5
/0

5

1
2
/2

7
/0

5

1
2
/2

9
/0

5

1
2
/3

1
/0

5

1
/2

/0
6

1
/4

/0
6

1
/6

/0
6

1
/8

/0
6

1
/1

0
/0

6

1
/1

2
/0

6

1
/1

4
/0

6

1
/1

6
/0

6

1
/1

8
/0

6

1
/2

0
/0

6

1
/2

2
/0

6

scopeinfo.h

utilities.h

depfinder.cpp

grammar.cpp

grammar.h

collector.h
▪ Once reached a steady state the alpha values can

be approximated by some constant factor

cppCollector.inChanges

cppCollector.todueAincountchangeialConsequent
,. AcppCollector

0changeialConsequent

Change

changeialConsequent

Effect ive

ijm

i

n

jFile

ij

m

iFile
if

i

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File Sequence Increasing Risk Order

R
is

k
 V

a
lu

e

Risk (Estimated Alpha Used =0.1)

Risk (Individually Calculated Alpha Used)

Risk (Effective Alpha Used = 0.1317)

58

File Reusability Ranking Model

▪ Reuse of previously developed software components is desirable to
take advantage of work on previous projects and to avoid
development effort and cost that would otherwise be required.

▪ This ranking model helps engineering organizations capture most
important parts of a project to reuse in the future.

▪ Enables developers to evaluate a file for reuse without initially
looking at its code. Especially for the large projects, and may be
almost impossible to accomplish manually due to complex
interdependencies

▪ There is no good way to do that without our methods and tools.

59

File Reusability Ranking Model Cont…

▪ High RI (close to 1) is preferred.

▪ If a file is called by many others in the product, e.g., has

a high fan-in, then it has demonstrated its usefulness, at

least within that product by this in-situ reuse.

▪ If, however, it has a high fan-out, then it depends on

many other files, which makes it much harder to reuse.

FOFI

FI
RI

),0(FO)1,0[RI

transitive closure of fan-out

62

Reusability Model Applied
DepAnal

Reusabilty Values
New Design DepAnal Ver:1.9

0
.0

0
0
.0

0
0
.0

0
0
.0

0 0
.0

9
0
.1

0
0
.1

0
0
.1

1 0
.1

9
0
.1

9
0
.2

4
0
.2

9
0
.2

9
0
.3

1
0
.3

6
0
.3

8
0
.4

1
0
.4

1
0
.4

1
0
.4

2
0
.4

2
0
.4

4 0
.5

1 0
.6

0
0
.6

4 0
.7

3
0
.7

3
0
.7

4
0
.8

0
0
.8

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a

in
.c

p
p

s
y
n

ta
x
2

.c
p

p

re
im

p
l2

.h

T
O

K
.C

P
P

D
e

p
F

in
d

e
r.

c
p

p

D
e

p
F

in
d

e
r.

h

In
c
lu

d
e

M
n

g
r.

c
p

p

In
c
lu

d
e

M
n

g
r.

h

D
e

p
R

e
c
o

rd
e

r.
c
p

p

D
e

p
R

e
c
o

rd
e

r.
h

G
ra

m
m

a
r.

c
p

p

C
o

lle
c
to

r.
c
p

p

C
o

lle
c
to

r.
h

re
g

e
x
p

r2
.c

p
p

G
ra

m
m

a
r.

h

S
c
o

p
e

In
fo

.c
p

p

N
A

V
.H

re
g

e
x
p

r2
.h

N
A

V
.C

P
P

s
y
n

ta
x
2

.h

re
s
ta

c
k
.h

S
c
o

p
e

In
fo

.h

U
ti
lit

ie
s
.c

p
p

U
ti
lit

ie
s
.h

T
O

K
.H

F
IL

E
IN

F
O

.H

F
IL

E
IN

F
O

.C
P

P

IT
e

s
t.

h

S
E

M
I.

H

S
E

M
I.

C
P

P

File Names

R
e

u
s

a
b

il
it

y
 V

a
lu

e

63

Simulating Constructive Changes

▪ We examine the affect of changes we may make

to improve the structure of systems analyzed

with the help of DepAnal and DepView

▪ We simulated (except for DepAnal) the effects of

changes

▪ Elimination of global variables and

▪ Inserting interfaces between components.

64

Change in Risk Values
Simulation of Global Data Elimination - GKGFX

Risk Values for GKGFX Lib. 1.4.1

1

10

100

1000

10000

100000

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

File Name Increasing Risk Order

R
is

k
 V

a
lu

e
 (

L
o
g
.
S

c
a
le

)

Risk (Original)

Risk (Global Object Dependency Removed)

67

Conclusions to this Point

▪ The models and tools we’ve developed for this

research have the power to find and display

structural problems in large software systems.

▪ Our work shows that specific constructive

changes can significantly improve system

structure and reduce risk.

70

Contributions

▪ Developed Risk model which pinpoints problem files and supports
comparisons before and after fixes.

▪ We introduced a reusability model that indexes software
components according to their potential for reuse.

▪ We designed and conducted an experiment to investigate the
impact of change in one file on other files, in terms of consequential
changes they require.

▪ We designed and developed tools implementing these algorithms
and methods that are capable of analyzing very large sets of files
(6193 files analyzed in 4 hours)

▪ DepAnal/DepView is our experimental apparatus needed to provide new
results.

▪ Demonstrated specific means to improve structural problems,
using risk model and DepAnal/DepView.

