
.Net Sockets

Jim Fawcett

CSE681 – Software Modeling &
Analysis

Fall 2008

References
 www.msdn.microsoft.com/library

 .Net Development/.Net Framework SDK/

 .Net Framework/Reference/ClassLibrary/
 System.Net.Sockets

 http://www.dotnetjunkies.com/quickstart/howto/
doc/TCPUDP/DateTimeClient.aspx

 C# NetworkProgramming, Richard Blum, Sybex,
2003

 Win32 Sockets, Jim Fawcett, Fall 2002

http://www.msdn.microsoft.com/library
http://www.dotnetjunkies.com/quickstart/howto/doc/TCPUDP/DateTimeClient.aspx
Win32Sockets.ppt

What are Sockets?
 Sockets provide a common interface to the

various protocols supported by networks.

 They allow you to establish connections
between machines to send and receive data.

 Sockets support the simultaneous
connection of multiple clients to a single
server machine.

Socket Logical Structure

Socket

recv buffer
recv buffer

Socket

recv buffer

bytes

bytes

How do Sockets Function?

 There are several modes of operation available for sockets.

 A very common mode is to establish a socket listener that
listens on some port, say 4040, for connection requests.

 When a socket client, from another process or a remote
computer, requests a connection on port 4040, the listener
spawns a new thread that starts up a socket server on a new
port, say 5051.

 From that time on the socket client and socket server
communicate on port 5051. Either one can send data, in the
form of a group of bytes, to the other.

 Meanwhile the listener goes back to listening for connection
requests on port 4040.

Socket Client, Server, and Listener

Client/Server Configuration

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

Socket Data Transfer
 The receiving socket, either client or server, has a buffer that

stores bytes of data until the receiver thread reads them.

 If the receiver buffer is full, the sender thread will block on
a send call until the receiver reads some of the data out of
the buffer.

 For this reason, it is a good idea to assign a thread in the
receiver to empty the buffer and enqueue the data for a worker
thread to digest.

 If the receiver buffer becomes full during a send, the send
request will return having sent less than the requested
number of bytes.

 If the receiving buffer is empty, a read request will block.

 If the receiving buffer has data, but less than the number
of bytes requested by a read, the call will return with the
bytes available.

Non-Blocking Communication

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

FIFO queue

processing thread

receiver thread

Basic .Net Network Objects
 TCPListener

 TCPListener(port)

 AcceptTcpClient()

 AcceptSocket()

 Start()

 Stop()

 Socket
 Send(byte[], size, socketFlags)

 Receive(byte[], size, socketFlags)

 Close()

 ShutDown(SocketShutDown)

More Network Programming Objects

 TCPClient
 TCPClient()
 Connect(IPAddress, port)
 GetStream()
 Close()

 NetworkStream
 NetworkStream(Socket)
 Read(byte[], offset, size)
 Write(byte[], offset, size)

You read and write

using the returned

NetworkStream object

Simple Socket Client
TcpClient tcpc = new TcpClient();

Byte[] read = new Byte[32]; // read buffer

String server = args[0]; // server name

// Try to connect to the server

tcpc.Connect(server, 2048);

// Get a NetworkStream object

Stream s;

s = tcpc.GetStream();

// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);

String Time = Encoding.ASCII.GetString(read);

// Display the data

Console.WriteLine("\n Received {0} bytes", bytes);

Console.WriteLine(" Current date and time is: {0}", Time);

tcpc.Close();

Connects to

server with this

name

Connects to this

server port

Simple Socket Server
TcpListener tcpl = new TcpListener(2048); // listen on port 2048

tcpl.Start();

while (true)

{

// Accept will block until someone connects

Socket s = tcpl.AcceptSocket();

// Get current date and time then concatenate it into a string

now = DateTime.Now;

strDateLine = now.ToShortDateString()

+ " " + now.ToLongTimeString();

// Convert the string to a Byte Array and send it

Byte[] byteDateLine = ASCII.GetBytes(strDateLine.ToCharArray());

s.Send(byteDateLine, byteDateLine.Length, 0);

s.Close();

Console.WriteLine("\n Sent {0}", strDateLine);

}

Multi-threaded Server

 If we want to support concurrent clients, the
server must spawn a thread for each new
client.

 C# Thread class makes that fairly simple.
 Create a class that provides a non-static

processing function. This is the code that
serves each client.

 Each time the TCPListener accepts a client it
returns a socket. Pass that to the thread
when it is constructed, and start the thread.

Define Thread’s Processing
class threadProc

{

private Socket _sock = null;

public threadProc(Socket sock)

{

_sock = sock;

}

public void proc()

{

for(int i=0; i<20; i++)

{

// Get the current date and time then concatenate it

// into a string

DateTime now = DateTime.Now;

string strDateLine = now.ToShortDateString() + " "

+ now.ToLongTimeString();

// Convert the string to a Byte Array and send it

Byte[] byteDateLine = Encoding.ASCII.GetBytes(strDateLine.ToCharArray());

_sock.Send(byteDateLine, byteDateLine.Length, 0);

Console.Write("\n Sent {0}", strDateLine);

Thread.Sleep(1000); // wait for one second just for demo

}

string QuitMessage = "Quit";

Byte[] byteQuit = Encoding.ASCII.GetBytes(QuitMessage.ToCharArray());

_sock.Send(byteQuit, byteQuit.Length, 0);

while(_sock.Connected)

Thread.Sleep(100);

_sock.Close();

}

}

Server Spawns Threads to Handle
New Clients with threadProc.proc()

// listen on port 2048

TcpListener tcpl = new TcpListener(2048);

tcpl.Start();

while (true)

{

// Accept will block until someone connects

Socket s = tcpl.AcceptSocket();

threadProc tp = new threadProc(s);

// pass threadProc.proc() function reference to

// ThreadStart delegate

Thread t = new Thread(new ThreadStart(tp.proc));

t.Start();

}

Clients now Wait for Server to Complete
// Try to connect to the server

tcpc.Connect(server, 2048);

// Get the NetworkStream object

Stream s;

s = tcpc.GetStream();

while(true)

{

// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);

String TSvrMsg = Encoding.ASCII.GetString(read);

TSrvMsg = TSrvMsg.Remove(bytes,TSrvMsg.Length-bytes);

// Display the data

if(TSrvMsg == "Quit")

{

Console.Write("\n Quitting");

break;

}

Console.WriteLine(" Server date and time is: {0}",
TSrvMsg);

}

tcpc.Close();

Talk Protocol
 The hardest part of a client/server socket

communication design is to control the active
participant

 If single-threaded client and server both talk at the
same time, their socket buffers will fill up and they
both will block, e.g., deadlock.

 If they both listen at the same time, again there is
deadlock.

 Often the best approach is to use separate send and
receive threads

 two unilateral communication channels

 The next slide shows how to safely use bilateral
communication.

Bilateral Channel Talk-Listen Protocol

Client

Server’s Client Handler

sending receiving

/extract token

/send token

/send message /extract message

receiving sending

/extract token

/send token
/send message/extract message

/send token

/send done

/receive done

Each connection channel
contains one “sending” token.

Message Length

 Another vexing issue is that the receiver may
not know how long a sent message is.

 so the receiver doesn’t know how many bytes
to pull from the stream to compose a message.

 Often, the communication design will arrange
to use message delimiters, fixed length
messages, or message headers that carry the
message length as a parameter.

Message Framing
 There are three solutions to this problem:

 Use fixed length messages – rarely useful

 Use fixed length message headers

 Encode message body length in header

 Reader pulls header, parses to find length of rest
of message and pulls it.

 Use message termination sentinals

 <msg>body of message</msg>

 Reader reads a character at a time out of channel

 Adds character to message

 Scans message from back looking for </msg> to
conclude message extraction.

They’re Everywhere
 Virtually every network and internet

communication method uses sockets, often in
a way that is invisible to an application
designer.

 Browser/server

 ftp

 SOAP

 Network applications

Sockets

The End

