
.Net Sockets

Jim Fawcett

CSE681 – Software Modeling &
Analysis

Fall 2008

References
 www.msdn.microsoft.com/library

 .Net Development/.Net Framework SDK/

 .Net Framework/Reference/ClassLibrary/
 System.Net.Sockets

 http://www.dotnetjunkies.com/quickstart/howto/
doc/TCPUDP/DateTimeClient.aspx

 C# NetworkProgramming, Richard Blum, Sybex,
2003

 Win32 Sockets, Jim Fawcett, Fall 2002

http://www.msdn.microsoft.com/library
http://www.dotnetjunkies.com/quickstart/howto/doc/TCPUDP/DateTimeClient.aspx
Win32Sockets.ppt

What are Sockets?
 Sockets provide a common interface to the

various protocols supported by networks.

 They allow you to establish connections
between machines to send and receive data.

 Sockets support the simultaneous
connection of multiple clients to a single
server machine.

Socket Logical Structure

Socket

recv buffer
recv buffer

Socket

recv buffer

bytes

bytes

How do Sockets Function?

 There are several modes of operation available for sockets.

 A very common mode is to establish a socket listener that
listens on some port, say 4040, for connection requests.

 When a socket client, from another process or a remote
computer, requests a connection on port 4040, the listener
spawns a new thread that starts up a socket server on a new
port, say 5051.

 From that time on the socket client and socket server
communicate on port 5051. Either one can send data, in the
form of a group of bytes, to the other.

 Meanwhile the listener goes back to listening for connection
requests on port 4040.

Socket Client, Server, and Listener

Client/Server Configuration

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

Socket Data Transfer
 The receiving socket, either client or server, has a buffer that

stores bytes of data until the receiver thread reads them.

 If the receiver buffer is full, the sender thread will block on
a send call until the receiver reads some of the data out of
the buffer.

 For this reason, it is a good idea to assign a thread in the
receiver to empty the buffer and enqueue the data for a worker
thread to digest.

 If the receiver buffer becomes full during a send, the send
request will return having sent less than the requested
number of bytes.

 If the receiving buffer is empty, a read request will block.

 If the receiving buffer has data, but less than the number
of bytes requested by a read, the call will return with the
bytes available.

Non-Blocking Communication

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

FIFO queue

processing thread

receiver thread

Basic .Net Network Objects
 TCPListener

 TCPListener(port)

 AcceptTcpClient()

 AcceptSocket()

 Start()

 Stop()

 Socket
 Send(byte[], size, socketFlags)

 Receive(byte[], size, socketFlags)

 Close()

 ShutDown(SocketShutDown)

More Network Programming Objects

 TCPClient
 TCPClient()
 Connect(IPAddress, port)
 GetStream()
 Close()

 NetworkStream
 NetworkStream(Socket)
 Read(byte[], offset, size)
 Write(byte[], offset, size)

You read and write

using the returned

NetworkStream object

Simple Socket Client
TcpClient tcpc = new TcpClient();

Byte[] read = new Byte[32]; // read buffer

String server = args[0]; // server name

// Try to connect to the server

tcpc.Connect(server, 2048);

// Get a NetworkStream object

Stream s;

s = tcpc.GetStream();

// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);

String Time = Encoding.ASCII.GetString(read);

// Display the data

Console.WriteLine("\n Received {0} bytes", bytes);

Console.WriteLine(" Current date and time is: {0}", Time);

tcpc.Close();

Connects to

server with this

name

Connects to this

server port

Simple Socket Server
TcpListener tcpl = new TcpListener(2048); // listen on port 2048

tcpl.Start();

while (true)

{

// Accept will block until someone connects

Socket s = tcpl.AcceptSocket();

// Get current date and time then concatenate it into a string

now = DateTime.Now;

strDateLine = now.ToShortDateString()

+ " " + now.ToLongTimeString();

// Convert the string to a Byte Array and send it

Byte[] byteDateLine = ASCII.GetBytes(strDateLine.ToCharArray());

s.Send(byteDateLine, byteDateLine.Length, 0);

s.Close();

Console.WriteLine("\n Sent {0}", strDateLine);

}

Multi-threaded Server

 If we want to support concurrent clients, the
server must spawn a thread for each new
client.

 C# Thread class makes that fairly simple.
 Create a class that provides a non-static

processing function. This is the code that
serves each client.

 Each time the TCPListener accepts a client it
returns a socket. Pass that to the thread
when it is constructed, and start the thread.

Define Thread’s Processing
class threadProc

{

private Socket _sock = null;

public threadProc(Socket sock)

{

_sock = sock;

}

public void proc()

{

for(int i=0; i<20; i++)

{

// Get the current date and time then concatenate it

// into a string

DateTime now = DateTime.Now;

string strDateLine = now.ToShortDateString() + " "

+ now.ToLongTimeString();

// Convert the string to a Byte Array and send it

Byte[] byteDateLine = Encoding.ASCII.GetBytes(strDateLine.ToCharArray());

_sock.Send(byteDateLine, byteDateLine.Length, 0);

Console.Write("\n Sent {0}", strDateLine);

Thread.Sleep(1000); // wait for one second just for demo

}

string QuitMessage = "Quit";

Byte[] byteQuit = Encoding.ASCII.GetBytes(QuitMessage.ToCharArray());

_sock.Send(byteQuit, byteQuit.Length, 0);

while(_sock.Connected)

Thread.Sleep(100);

_sock.Close();

}

}

Server Spawns Threads to Handle
New Clients with threadProc.proc()

// listen on port 2048

TcpListener tcpl = new TcpListener(2048);

tcpl.Start();

while (true)

{

// Accept will block until someone connects

Socket s = tcpl.AcceptSocket();

threadProc tp = new threadProc(s);

// pass threadProc.proc() function reference to

// ThreadStart delegate

Thread t = new Thread(new ThreadStart(tp.proc));

t.Start();

}

Clients now Wait for Server to Complete
// Try to connect to the server

tcpc.Connect(server, 2048);

// Get the NetworkStream object

Stream s;

s = tcpc.GetStream();

while(true)

{

// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);

String TSvrMsg = Encoding.ASCII.GetString(read);

TSrvMsg = TSrvMsg.Remove(bytes,TSrvMsg.Length-bytes);

// Display the data

if(TSrvMsg == "Quit")

{

Console.Write("\n Quitting");

break;

}

Console.WriteLine(" Server date and time is: {0}",
TSrvMsg);

}

tcpc.Close();

Talk Protocol
 The hardest part of a client/server socket

communication design is to control the active
participant

 If single-threaded client and server both talk at the
same time, their socket buffers will fill up and they
both will block, e.g., deadlock.

 If they both listen at the same time, again there is
deadlock.

 Often the best approach is to use separate send and
receive threads

 two unilateral communication channels

 The next slide shows how to safely use bilateral
communication.

Bilateral Channel Talk-Listen Protocol

Client

Server’s Client Handler

sending receiving

/extract token

/send token

/send message /extract message

receiving sending

/extract token

/send token
/send message/extract message

/send token

/send done

/receive done

Each connection channel
contains one “sending” token.

Message Length

 Another vexing issue is that the receiver may
not know how long a sent message is.

 so the receiver doesn’t know how many bytes
to pull from the stream to compose a message.

 Often, the communication design will arrange
to use message delimiters, fixed length
messages, or message headers that carry the
message length as a parameter.

Message Framing
 There are three solutions to this problem:

 Use fixed length messages – rarely useful

 Use fixed length message headers

 Encode message body length in header

 Reader pulls header, parses to find length of rest
of message and pulls it.

 Use message termination sentinals

 <msg>body of message</msg>

 Reader reads a character at a time out of channel

 Adds character to message

 Scans message from back looking for </msg> to
conclude message extraction.

They’re Everywhere
 Virtually every network and internet

communication method uses sockets, often in
a way that is invisible to an application
designer.

 Browser/server

 ftp

 SOAP

 Network applications

Sockets

The End

