
.NET Deployment

Matt Smouse

CSE775 – Distributed Objects

Spring 2003

Outline

 Deployment issues

 Configuration files

 Soapsuds and implementation hiding

 Server Deployment with Windows Services

 Server Deployment with IIS

 Client Deployment with IIS

Deployment Issues

 Change in server location

 Does the client hard-code the location and port of remote objects

on the server?

 Uses of the application

 Will this application be used in other ways? For instance, LAN vs

Internet use.

 New/additional remotable objects

 Will we be adding remotable objects after we have built the

application?

 Web deployment

 Implementation hiding

 Do we want to allow the client to disassemble our code?

Configuration Files

 Rather than hard-code the registration of remote
objects and their channels, we can use a
configuration file.

 Using a configuration file allows us to do the
following without recompiling the server or client:
 Change the type of channel that is used

 Add additional remotable objects

 Change the lifetime settings of remotable objects

 Add message sinks or formatters to the server or client

 This functionality is available through the
System.Runtime.Remoting assembly.

Configuration Files (cont)

 A configuration file is an XML document that is
loaded by the server or client.

 Use two different configuration files for the client and
the server.

 On the server, load the configuration file using
RemotingConfiguration.Configure(“MyServer.exe.config”);

 On the client, load the configuration file using
RemotingConfiguration.Configure(“MyClient.exe.config”);

 After loading the configuration file on the client,
simply call new on the remotable object class to
create a proxy.

Configuration Files (cont)

 Content and structure
<configuration>

<system.runtime.remoting>

<application>

<lifetime />

<channels />

<service />

<client />

</application>

</system.runtime.remoting>

</configuration>

Configuration Files (cont)

 Lifetime
 The <lifetime> tag allows you to change the lifetime of your

remotable objects.

 Valid attributes:

 leaseTime – This is the initial lease time that an object will
have to live before it is destroyed.

 sponsorshipTimeout – The time to wait for a sponsor’s reply.

 renewOnCallTime – This is the additional lease time that is
added with each call on the remote object.

 leaseManagerPollTime – Specifies when the object’s current
lease time will be checked.

 Note that these apply to Singleton and Client-Activated
objects only.

Configuration Files (cont)

 Channels
 The <channels> element contains the channels that your

application will be using. We declare channels with the
<channel> tag.

 The <channel> tag specifies the type, port, and other properties
for a particular channel.

 Valid attributes:

 ref – “http” or “tcp”

 displayName – Used for .NET Framework Configuration Tool

 type – if ref is not specified, contains namespace, classname, and
assembly of the channel implementation.

 port – server side port number. Use 0 on the client if you want to get
callbacks from the server.

 name – Unique names to specify multiple channels (use “”)

 priority – Sets priority of using one channel over another.

Configuration Files (cont)

 Channels
 Valid attributes (cont):

 clientConnectionLimit – Number of simultaneous connections
to a particular server (default = 2)

 proxyName – name of the proxy server

 proxyPort – port of the proxy server

 suppressChannelData – specifies whether a channel will add to the
ChannelData that is sent when an object reference is created

 useIpAddress – specifies whether the channel should use IP
addresses in URLs rather than hostname of the server

 listen – setting for activation hooks into listener service

 bindTo – used with computers that have multiple IP addresses

 machineName – overrides useIpAddress

 rejectRemoteRequests (tcp only) – sets local communication only

Configuration Files (cont)

 Providers

 Sink and formatter providers allow the user to specify the

manner in which messages are generated and captured by

the framework for each channel.

 Both the client and server may specify settings for

 The tags <serverProviders></serverProviders> and

<clientProviders></clientProviders> contain the individual

settings for each provider or formatter that you wish to set.

 You can specify one formatter and multiple provider settings.

 You must place the settings in the order shown:

Configuration Files (cont)

 Example channel entry for a server:

<channels>

<channel ref=“http” port=“1234”>

<serverProviders>

<formatter ref=“binary” />

<provider type=“MySinks.Sample, Server” />

</serverProviders>

</channel>

</channels>

Configuration Files (cont)

 Providers (cont)

 Available attributes for formatters and providers:

 ref – “soap”, “binary”, or “wsdl”

 type – if ref is not specified, contains namespace, classname, and

assembly of the sink provider implementation.

 includeVersions (formatter only) – specifies whether version

information is included with object requests

 strictBinding (formatter only) – specifies whether the server must

use an exact type and version for object requests

Configuration Files (cont)
 Service

 The <service> tag is used in the server’s configuration file to
specify the remote objects that will be hosted.

 Contains <wellknown /> and <activated /> entries for server-
activated objects (SAOs) and client-activated objects (CAOs),
respectively.

 Valid attributes for <wellknown />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

 mode – Singleton or SingleCall

 objectUri – Important for IIS hosting (URIs must end in .rem or .soap,
as those extensions can be mapped into the IIS metabase.

 displayName – Optional, used by .NET Framework configuration tool.

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

Configuration Files (cont)
 Client

 The <client> tag is used in the client’s configuration file to specify

the types of remote objects that it will use.

 Contains attribute for the full URL to the server if using CAOs.

 Contains <wellknown /> and <activated /> entries for server-

activated objects (SAOs) and client-activated objects (CAOs),

respectively.

 Valid attributes for <wellknown />

 url – The full URL to the server’s registered object

 type - Specifies the namespace, classname, and assemblyname of

the remote object.

 displayName – Optional, used by .NET Framework configuration tool

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of

the remote object.

Configuration Files (cont)

 Usage notes:

 Errors in your configuration file cause the framework to

instantiate a local copy of the remote object rather than a

proxy when you call new on it. Check the IsTransparentProxy

method to be sure you are using a remote object.

 When you specify assembly names in your <wellknown /> and

<activated />, don’t include the extension (.dll or .exe).

 You only have to specify the features that you want/need in

your configuration file.

 You don’t have to use the <channel /> setting on the client if

you use the default “http” or “tcp” channels on the server. You

must specify a port on the server.

Soapsuds and Implementation Hiding

 The first thing that you may notice when using .NET
remoting is that the remote object assemblies must
be present on the client.

 We can get away with using interfaces to hide
implementation if we stick with programmatic
remoting configuration.
 Create an assembly that contains interfaces which can be

included on the client machine.

 Create another assembly which contains the remote object
implementations of the interfaces you specified earlier.

 Call Activator.GetObject on the client when you want a
class that implements the interface you specify.

 Example:
In the shared assembly:

public interface IExampleClass {…}

In the assembly on the server:

public class ExampleClass : MarshalByRefObject, IExampleClass {…}

On the client:

IExampleClass iec = (IExampleClass) Activator.GetObject(

typeof(IExampleClass),

“tcp://localhost:1234/ExampleClass”);

Soapsuds and Implementation Hiding (cont)

 Soapsuds is a Visual Studio tool that allows you to

extract metadata from an assembly. The new

assembly contains no implementation detail, just

meta (type) information.

 If our application contains only remote objects and

no customized [serializable] objects, then we can

just run soapsuds on the assembly containing our

remote objects and include the new assembly on

the client.

soapsuds -ia:MyRemoteObjects -nowp -oa:MyRemoteMeta.dll

Soapsuds and Implementation Hiding (cont)

Soapsuds and Implementation Hiding (cont)

 If our application does include custom [serializable]
objects that are passed between domains, then we
can’t just generate a new assembly. We have to use
generated source code that describes the remote
object metadata.

soapsuds -ia:MyRemoteObjects –nowp –gc

 Note that this does not include objects that are
native to the framework, i.e. strings, FileInfo,
DirectoryInfo, etc. If our application only uses these
types of [serializable] objects, then generating a
“meta” assembly will work fine.

Soapsuds and Implementation Hiding (cont)

MyRemoteObjects

MySerializableObjects

Server Client

Run soapsuds

and add generated

source code to client

project.

Project configuration:

Include these

libraries on

the server.

Include this

library on

the client.

Server Deployment with Windows Services

 A .NET windows service inherits from

System.ServiceProcess.ServiceBase

 Place your application specific code in the OnStart(..) method.

 You have to provide an installer class along with your

windows service class.

 Using a windows service allows you to do event logging

 If your service does remoting, you have to place the

configuration file in c:\WINNT\system32

 Install the service using installutil YourServiceName.exe

 After you’ve installed the service, you can start it using the

Microsoft Management Console.

Server Deployment with IIS

 If you are concerned about security, then IIS hosting

is the best way to go.

 Authentication and encryption features are available

through IIS.

 Remote objects are now hosted in IIS; there is no

Main() in the server.

 Updates to the server are easy: just copy over the

remote object assembly and web.config file. IIS will

automatically read the new data.

Server Deployment with IIS

 Procedure:

 Create a class library for your remotable objects

 Build the assembly for the class library

 Create a web.config file for the server

 Create a virtual directory on the host machine

 Set the desired authentication methods for the directory

 Place the web.config file in the virtual directory

 Create a /bin directory in the virtual directory

 Place the remotable object assembly in the virtual directory

 Create a client and configuration file

Client Deployment with IIS

 By placing a WinForm application in a virtual directory, we can

stream it to clients.

 When a URL is selected by a client machine, an HTTP

request is sent to the server, which streams the application

back to the client.

 The application is then stored in the browser cache and also

the .NET download cache.

 The runtime opens the application automatically and also

makes requests for additional assemblies and files as

necessary.

 Be sure to put any remoting configuration files in the virtual

directory with the client application.

End of Presentation

