
PROGRAM STRUCTURE

Jim Fawcett
CSE681 – Software Modeling and Analysis
Fall 2013

What is Program Structure?

 Partitions

 Separation of concerns

 Communication

 How do the parts make requests and send
notifications?

 Sharing

 How is data shared between the parts?

 Control

 Which parts are responsible?

What is Program Structure?

 Logical:
 Interfaces, classes, and class relationships

 Package:
 Package dependency tree, as shown in OCD package

diagrams
 Subsystems, e.g., collection of packages separated by

interfaces with each focused on specialized processing
 For a radar those might be: signal processing, beam forming,

data management, operator control, communication.

 Execution:
 Monolithic Program, e.g., an exe
 Program with loadable Dynamic Link Libraries (DLLs)
 Cooperating processes, e.g., client-server, server

federation, etc.

Scanner

Parser

Executive

+addRule(in pRule : IRule*) : void

+parse() : bool

-breakingRules : vector<IRule*>

-nonbreakingRules : vector<IRule*>

-ITokColl : ITokCollection*

Parser

+addAction(in pAction : IAction*) : void

+doActions(in pTokColl : ITokCollection*) : void

+doTest(in pTokColl : ITokCollection*) : bool

-actions : vector<IAction*>

IRule

+doAction(in pTokColl : ITokCollection*) : void

IAction

+get() : bool

+operator[](in n : int) : string

+find(in tok : string) : int

+remove(in tok : string) : bool

-pToker : Toker*

-toks : vector<string>

XmlParts or SemiExp

DerivedRule1

DerivedAction2

+getTok() : string

+attach(in name : const String&, in isFile : bool) : bool

-scToks : string

-putbacks : vector<char>

Toker

istream

ifstream istringstream

Parsing Facility

ostream

Form1

A

A

A

A

DerivedAction1

A

A

IBuilder

ConfigureParser

AA

DerivedRule2 ScopeStack

A

ConsoleExec

Repository

Display

Formatter Display

A

ITokCollection

Program Structure Contents

 Data Driven

 Client server

 Three tier

 Model-View-Controller

 Communication Driven

 Peer-to-peer

 Service oriented

 Components

 Thread & Event Driven

 Single Threaded
Apartment (STA)

 Parallel execution

 Pipeline execution

 Enterprise Computing

 Federated systems

DATA DRIVEN STRUCTURES

Data Driven Structures

 Some program structures are driven by the
presentation and management of data:

 Client-Server

 Three-Tier

 Model-View-Controller

 Publish and Subscribe

Structure: Client-Server

 Behavior:
 Server is passive, waits for client requests

 Server handles multiple concurrent clients

 Without additional structure system may become
tightly coupled and difficult to change

 Example:
 Web server and browser clients

 Every class that holds a reference to another
thread-safe class

Sharing Data

 Relational Databases – SQL Server
 ACID – Atomicity, Consistency, Isolation, Durability

 ACID => Transactional

 File Systems

 Ad. Hoc. in-memory repositories

 Key-Value Stores – Memcached

 Extensible Record Stores – Google’s Big Table
 Distributed partitioned tables

 Document Stores – CouchDB
 Multi-indexed objects aggregated into domains

Separation of Concerns

 Except for the simplest of applications it’s not
a good idea to bind presentation, control, and
data together.

 There often are many views, more than one
application mode, many sources of data.

 If we bind these all together we get spaghetti

 Very hard to test, hard to maintain, hard to
document.

Structure: Three-Tier

 Structure:

 Partitioned into presentation, application logic,
and data management.

 Intent is to loosely couple these three aspects of
an application to make it resilient to change.

 Examples:

 Most well-designed applications.

Model-View-Controller
 Structure:

 MVC is a refined version of the Three-Tier structure,
intended to support multiple views and data models.

 Models do all data storage management.

 Views present information to user, format output but
do no other transformations on data.

 Controllers accept inputs, implement application
processing, and use Models and Views to provide the
application’s behavior.

 Application phases often have one controller each.

 Models may be shared between controllers.

 Examples: Project #2 Fall ‘10, Asp.Net MVC

Basic MVC Structure

MVC – With View &
Application Models

 Views and Models often have some
substructure, e.g.:

View – View Model

 A view is what gets rendered

 A view model is an abstraction that:

 Defines resources that many be used in several
places.

 Defines styles that may be used in several places

 Defines an object model for the application to
manipulate

Application vs. Data Models

 Application model

 Defines classes for all the entities a user knows and
cares about, e.g., orders, customers, products, etc.

 Data model

 Defines wrapper classes for tables and stored
procedures

 Manages connections

 Object to Relational Mapping

 Relationships between application objects and data
objects.

Object Relational Mapping

 Data Layers often have an ORM substructure

 Examples: Hibernate, Microsoft Entity
Framework

N-Tier Structure

 So, the three tier MVC has morphed into a
five tier V-VM-C-AM-DM

 View – what gets rendered

 View Model – an abstraction of the view

 Controller – routes View events to handlers in the
Application Model

 Application Model – classes that model the
“business” logic

 Data Model – models data storage tables

 Database, XML file, custom data structures

MVC – Multiple Controllers

Structure: Publish & Subscribe

 Structure:

 Many to many connection of Publishers and
Subscribers.

 Each subscriber registers for notifications with a
specific interface.

 Publishers send notifications to all enrolled
subscribers when a publisher event occurs.

 Publishers can support multiple events.

 Publishers don’t need to know anything about the
subscriber.

Layered Structure

 Provides a structure based on:

 System Services – things the user doesn’t think
about

 Communication, storage, security, file caching, …

 User Services – things the user manipulates as
part of the use of the system

 Input, Display, Check-in/Check-out, …

 Ancillary – Things that are not part of the system
mission but are necessary

 Logging, extension hooks, test hooks, …

Component-Based

 Structure:
 A componentized system is composed of an

application with many pluggable component
parts.

 A component is pluggable if it implements a plug-
in interface, published by the application, provides
an object factory for activating its internal objects,
and is packaged as a dynamic link library (DLL).

 Example:
 http://www.ecs.syr.edu/faculty/fawcett/handouts/

CSE681/code/Parser/ almost implements.

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Parser/

Example Componentized System

Communication Driven
Structure

Communication Driven Structure

 When users, data, and application logic are
distributed across processes and machines
communication becomes important:

 Peer-to-peer

 Service oriented

Structure: Peer-To-Peer

 Behavior:
 Peers interact, sending and receiving messages from

each other.
 Peers are sometimes identical.
 Many Peer-to-Peer models support central or

distributed locater services.

 Examples:
 http://www.ecs.syr.edu/faculty/fawcett/handouts/

CoreTechnologies/SocketsAndRemoting/code/
WCF_Fawcett_Examples/WCF_Peer_Comm/

 Bit-Torrent
 Napster

http://www.ecs.syr.edu/faculty/fawcett/handouts/CoreTechnologies/SocketsAndRemoting/code/WCF_Fawcett_Examples/WCF_Peer_Comm/

Peer-To-Peer Asynchronous
Message-Passing Structure

Each Peer is a separate process
possibly on separate machines

Processing

Processing

Communication Types

 Remote Procedure Call (RPC):
 Supports function call semantics between processes and

machines.

 Sends messages over wire but provides stack frames for
client and server to support the function call model.

 Examples: COM, CORBA, WCF

 Message Passing:
 Sends message with encoded request and/or data

 Message contains endpoint information for routing

 Directly supports asynchronous processing

 Examples: Internet, Web, SMA and OOD projects

Communication Patterns

 TwoWay:
Synchronous Request, wait for reply

 Duplex:
asynchronous request, reply sent as callback

 OneWay:
Send Message and forget
 Receiver may send result back to requester as a

subsequent message

 Examples:
 All of the above are supported by WCF

Communication Style

 Push Model

 Send information to a remote endpoint via a
service call, perhaps via a message:

void PostMessage(Message msg);

 Pull Model

 Retrieve information from a remote endpoint via a
service call, perhaps by a streaming download:

Stream downLoad(string filename);

Communication Style

 Pull Service and Caching

 A Software Repository could expose a WCF service
that provides information about its package
contents including dependencies.

 That allows a client, for example, to pull from the
Repository all files in a package dependency list that
are not already in its file cache.

Service Oriented

 Structure:
 Service oriented systems are simply client server.
 Usually the server is implemented with a web service

or operating system service.
 Web service is a web application that provides an

interface for client software to access.
 OS service is a system application that provides an

interface for requests and an administration interface for
setting service startup and shutdown policies.

 Windows Communication Foundation (WCF) has
extended that model to support hosting in:
 desktop application
 windows service hosted with Windows Service Control

Manager (SCM)
 web service hosted by Internet Information Server (IIS).

UDDI

Registry

Web Site

DISCO file

WSDL

WEB Service

Discovery

Interface

SOAP Messages

Internet

Internet

C# Web Services, Banerjee, et. al.,

WROX, 2001

REpresentational State Transfer

 REST is a message-passing communication
system built on the HTTP protocol, using the
Web verbs:
 Get – retrieve a resource without changing the state of

the server.

 Post – send information to the server that may change
its state.

 Put – place a resource on the server.

 Delete – remove a resource from the server.

 Its encoding is UTF text, not SOAP or some other
complex messaging format, but may use
encryption, as in HTTPS.

Thread & Event Driven
Structure

Threading Driven Structure

 Some program structures are a consequence
of specific threading models

 Event-driven and Single Threaded Apartment
(STA)

 Parallel execution

 Pipelined execution

Structure: Event-Driven

 Structure:

 Events from multiple concurrent sources generate
messages which are enqueued, and typically are
processed by a single handling thread.

 Messages are dispatched to event-handlers for
processing.

 Example:

 Windows processing

Event-Driven

Single Threaded Apartment

 Graphical User Interfaces all use the STA model.

 Possibly concurrent clients send messages to the GUI’s
message queue.

 All messages are retrieved by a single thread, the one that
created the window.

 Child threads, often used to execute tasks for the GUI, are
not allowed to directly interact with the window.

 Instead they must send or post messages to the window’s
message queue.

 This is often done with Form.Invoke or Dispatcher.Invoke.

Parallel Execution

 Structure:
 Often concurrent programs provide enqueued

task requests.

 Threads, perhaps from a thread pool, are
dispatched to handle each task.

 Tasks must be independent in order to fully realize
the benefits of concurrency.

 Example:
 Concurrent execution of dependency analysis

tasks.

Pipeline Execution

 Structure:

 Composed of cells.

 Each cell has a message queue and a child thread
that processes messages.

 Result messages may be sent on to another cell.

 Each cell type is defined by the way it overrides a
virtual message processing function.

 Example:

 Project #4, CSE687 – OOD, Spring 2010

Enterprise Computing

Enterprise Computing

 Large Enterprise Applications are usually
constructed as a federation of lower level
systems and subsystems.
 The federation is glued together with network based

middleware, or more commonly now, with web
services.

 Example: PeopleSoft, used by S.U.
 Payroll and accounting

 Academic planning and record keeping

 Employee services

 A variety of web applications, like mySlice.

Enterprise App: Project Center

 Federation of tools supporting Software
Development
 Open source tools with integrating wrappers:

 CVS – configuration managment

 Nant – sofware builds

 Nunit – software testing

 Newly developed and legacy tools:
 Bug tracker, change tracker, project scheduler

 http://www.ecs.syr.edu/faculty/fawcett/
handouts/webpages/ProjectCenter.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/ProjectCenter.htm

Federation Structure

 Federated Systems often are based on one of
two design patterns:

 Façade provides an integrating interface that
consolidates a, possibly large, set of system
interfaces into a single application interface in an
attempt to make the system easier to use than
working directly with its individual parts.

 Mediator serves as a communication hub so that
all the various subsystems need know only one
interface, that of the mediator.

Collaboration System

 System that focuses on sharing of processes and
products among peers with a common set of
goals.
 Primary focus is organizing and maintaining some

complex, usually evolving, state:
 Software development baseline
 Set of work plans and schedules
 Documentation and model of obligations
 Communication of events

 Example:
 Collab – CSE784, Fall 2007,

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

Other System Structures

Agent-Based

 System uses Software Agents
 Semi-autonomous, mobile, task oriented software

entities
 May be scheduled
 Provide scriptable user specific services

 Collect information from a large set of data
 Perform analyses on changing baseline and report
 Conduct specific tests
 Make narrowly specified modifications to baseline

 Example:
 CSE681 Project #5, summer 2009,

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE
681/Projects/Pr5Su09.doc

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Master’s Thesis Research
Examples

 The following are all based on Software
Matrix structure – Autonomous cells often
used with mediator

 Software Matrix – Gosh, 2004

 Self Healing Systems – Anirudha, 2005

 Cross Platform Development – Appadurai, 2007

 Model-Driven Development – Patel, 2007

 http://www.ecs.syr.edu/faculty/fawcett/hand
outs/webpages/research.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm

Other Structures

 TeraScale computing:
 Buzzword defined by Intel to describe parallel

execution on a many core processor.
 Expectations are chips with scores of processors

 Cloud Computing
 Buzzword adopted by many to describe remote

execution and storage of applications defined locally.
The cloud provides a stable endpoint that may map
onto any one of a large set of computing resources.

 Example:
 Microsoft’s Azure platform

SMA Projects

 Project #2
 Cooperating monolithic processes

 Composit Text analyzer
 Metadata generator

 Project #4
 Client-Server

 May have multiple concurrent clients
 Both client and server use DLLs for significant processing

 Project #5
 Federation of clients and servers

 Focuses on Software Repository server
 May wish to use virtual servers

THE END

