
PROGRAM STRUCTURE

Jim Fawcett
CSE681 – Software Modeling and Analysis
Fall 2013

What is Program Structure?

 Partitions

 Separation of concerns

 Communication

 How do the parts make requests and send
notifications?

 Sharing

 How is data shared between the parts?

 Control

 Which parts are responsible?

What is Program Structure?

 Logical:
 Interfaces, classes, and class relationships

 Package:
 Package dependency tree, as shown in OCD package

diagrams
 Subsystems, e.g., collection of packages separated by

interfaces with each focused on specialized processing
 For a radar those might be: signal processing, beam forming,

data management, operator control, communication.

 Execution:
 Monolithic Program, e.g., an exe
 Program with loadable Dynamic Link Libraries (DLLs)
 Cooperating processes, e.g., client-server, server

federation, etc.

Scanner

Parser

Executive

+addRule(in pRule : IRule*) : void

+parse() : bool

-breakingRules : vector<IRule*>

-nonbreakingRules : vector<IRule*>

-ITokColl : ITokCollection*

Parser

+addAction(in pAction : IAction*) : void

+doActions(in pTokColl : ITokCollection*) : void

+doTest(in pTokColl : ITokCollection*) : bool

-actions : vector<IAction*>

IRule

+doAction(in pTokColl : ITokCollection*) : void

IAction

+get() : bool

+operator[](in n : int) : string

+find(in tok : string) : int

+remove(in tok : string) : bool

-pToker : Toker*

-toks : vector<string>

XmlParts or SemiExp

DerivedRule1

DerivedAction2

+getTok() : string

+attach(in name : const String&, in isFile : bool) : bool

-scToks : string

-putbacks : vector<char>

Toker

istream

ifstream istringstream

Parsing Facility

ostream

Form1

A

A

A

A

DerivedAction1

A

A

IBuilder

ConfigureParser

AA

DerivedRule2 ScopeStack

A

ConsoleExec

Repository

Display

Formatter Display

A

ITokCollection

Program Structure Contents

 Data Driven

 Client server

 Three tier

 Model-View-Controller

 Communication Driven

 Peer-to-peer

 Service oriented

 Components

 Thread & Event Driven

 Single Threaded
Apartment (STA)

 Parallel execution

 Pipeline execution

 Enterprise Computing

 Federated systems

DATA DRIVEN STRUCTURES

Data Driven Structures

 Some program structures are driven by the
presentation and management of data:

 Client-Server

 Three-Tier

 Model-View-Controller

 Publish and Subscribe

Structure: Client-Server

 Behavior:
 Server is passive, waits for client requests

 Server handles multiple concurrent clients

 Without additional structure system may become
tightly coupled and difficult to change

 Example:
 Web server and browser clients

 Every class that holds a reference to another
thread-safe class

Sharing Data

 Relational Databases – SQL Server
 ACID – Atomicity, Consistency, Isolation, Durability

 ACID => Transactional

 File Systems

 Ad. Hoc. in-memory repositories

 Key-Value Stores – Memcached

 Extensible Record Stores – Google’s Big Table
 Distributed partitioned tables

 Document Stores – CouchDB
 Multi-indexed objects aggregated into domains

Separation of Concerns

 Except for the simplest of applications it’s not
a good idea to bind presentation, control, and
data together.

 There often are many views, more than one
application mode, many sources of data.

 If we bind these all together we get spaghetti

 Very hard to test, hard to maintain, hard to
document.

Structure: Three-Tier

 Structure:

 Partitioned into presentation, application logic,
and data management.

 Intent is to loosely couple these three aspects of
an application to make it resilient to change.

 Examples:

 Most well-designed applications.

Model-View-Controller
 Structure:

 MVC is a refined version of the Three-Tier structure,
intended to support multiple views and data models.

 Models do all data storage management.

 Views present information to user, format output but
do no other transformations on data.

 Controllers accept inputs, implement application
processing, and use Models and Views to provide the
application’s behavior.

 Application phases often have one controller each.

 Models may be shared between controllers.

 Examples: Project #2 Fall ‘10, Asp.Net MVC

Basic MVC Structure

MVC – With View &
Application Models

 Views and Models often have some
substructure, e.g.:

View – View Model

 A view is what gets rendered

 A view model is an abstraction that:

 Defines resources that many be used in several
places.

 Defines styles that may be used in several places

 Defines an object model for the application to
manipulate

Application vs. Data Models

 Application model

 Defines classes for all the entities a user knows and
cares about, e.g., orders, customers, products, etc.

 Data model

 Defines wrapper classes for tables and stored
procedures

 Manages connections

 Object to Relational Mapping

 Relationships between application objects and data
objects.

Object Relational Mapping

 Data Layers often have an ORM substructure

 Examples: Hibernate, Microsoft Entity
Framework

N-Tier Structure

 So, the three tier MVC has morphed into a
five tier V-VM-C-AM-DM

 View – what gets rendered

 View Model – an abstraction of the view

 Controller – routes View events to handlers in the
Application Model

 Application Model – classes that model the
“business” logic

 Data Model – models data storage tables

 Database, XML file, custom data structures

MVC – Multiple Controllers

Structure: Publish & Subscribe

 Structure:

 Many to many connection of Publishers and
Subscribers.

 Each subscriber registers for notifications with a
specific interface.

 Publishers send notifications to all enrolled
subscribers when a publisher event occurs.

 Publishers can support multiple events.

 Publishers don’t need to know anything about the
subscriber.

Layered Structure

 Provides a structure based on:

 System Services – things the user doesn’t think
about

 Communication, storage, security, file caching, …

 User Services – things the user manipulates as
part of the use of the system

 Input, Display, Check-in/Check-out, …

 Ancillary – Things that are not part of the system
mission but are necessary

 Logging, extension hooks, test hooks, …

Component-Based

 Structure:
 A componentized system is composed of an

application with many pluggable component
parts.

 A component is pluggable if it implements a plug-
in interface, published by the application, provides
an object factory for activating its internal objects,
and is packaged as a dynamic link library (DLL).

 Example:
 http://www.ecs.syr.edu/faculty/fawcett/handouts/

CSE681/code/Parser/ almost implements.

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Parser/

Example Componentized System

Communication Driven
Structure

Communication Driven Structure

 When users, data, and application logic are
distributed across processes and machines
communication becomes important:

 Peer-to-peer

 Service oriented

Structure: Peer-To-Peer

 Behavior:
 Peers interact, sending and receiving messages from

each other.
 Peers are sometimes identical.
 Many Peer-to-Peer models support central or

distributed locater services.

 Examples:
 http://www.ecs.syr.edu/faculty/fawcett/handouts/

CoreTechnologies/SocketsAndRemoting/code/
WCF_Fawcett_Examples/WCF_Peer_Comm/

 Bit-Torrent
 Napster

http://www.ecs.syr.edu/faculty/fawcett/handouts/CoreTechnologies/SocketsAndRemoting/code/WCF_Fawcett_Examples/WCF_Peer_Comm/

Peer-To-Peer Asynchronous
Message-Passing Structure

Each Peer is a separate process
possibly on separate machines

Processing

Processing

Communication Types

 Remote Procedure Call (RPC):
 Supports function call semantics between processes and

machines.

 Sends messages over wire but provides stack frames for
client and server to support the function call model.

 Examples: COM, CORBA, WCF

 Message Passing:
 Sends message with encoded request and/or data

 Message contains endpoint information for routing

 Directly supports asynchronous processing

 Examples: Internet, Web, SMA and OOD projects

Communication Patterns

 TwoWay:
Synchronous Request, wait for reply

 Duplex:
asynchronous request, reply sent as callback

 OneWay:
Send Message and forget
 Receiver may send result back to requester as a

subsequent message

 Examples:
 All of the above are supported by WCF

Communication Style

 Push Model

 Send information to a remote endpoint via a
service call, perhaps via a message:

void PostMessage(Message msg);

 Pull Model

 Retrieve information from a remote endpoint via a
service call, perhaps by a streaming download:

Stream downLoad(string filename);

Communication Style

 Pull Service and Caching

 A Software Repository could expose a WCF service
that provides information about its package
contents including dependencies.

 That allows a client, for example, to pull from the
Repository all files in a package dependency list that
are not already in its file cache.

Service Oriented

 Structure:
 Service oriented systems are simply client server.
 Usually the server is implemented with a web service

or operating system service.
 Web service is a web application that provides an

interface for client software to access.
 OS service is a system application that provides an

interface for requests and an administration interface for
setting service startup and shutdown policies.

 Windows Communication Foundation (WCF) has
extended that model to support hosting in:
 desktop application
 windows service hosted with Windows Service Control

Manager (SCM)
 web service hosted by Internet Information Server (IIS).

UDDI

Registry

Web Site

DISCO file

WSDL

WEB Service

Discovery

Interface

SOAP Messages

Internet

Internet

C# Web Services, Banerjee, et. al.,

WROX, 2001

REpresentational State Transfer

 REST is a message-passing communication
system built on the HTTP protocol, using the
Web verbs:
 Get – retrieve a resource without changing the state of

the server.

 Post – send information to the server that may change
its state.

 Put – place a resource on the server.

 Delete – remove a resource from the server.

 Its encoding is UTF text, not SOAP or some other
complex messaging format, but may use
encryption, as in HTTPS.

Thread & Event Driven
Structure

Threading Driven Structure

 Some program structures are a consequence
of specific threading models

 Event-driven and Single Threaded Apartment
(STA)

 Parallel execution

 Pipelined execution

Structure: Event-Driven

 Structure:

 Events from multiple concurrent sources generate
messages which are enqueued, and typically are
processed by a single handling thread.

 Messages are dispatched to event-handlers for
processing.

 Example:

 Windows processing

Event-Driven

Single Threaded Apartment

 Graphical User Interfaces all use the STA model.

 Possibly concurrent clients send messages to the GUI’s
message queue.

 All messages are retrieved by a single thread, the one that
created the window.

 Child threads, often used to execute tasks for the GUI, are
not allowed to directly interact with the window.

 Instead they must send or post messages to the window’s
message queue.

 This is often done with Form.Invoke or Dispatcher.Invoke.

Parallel Execution

 Structure:
 Often concurrent programs provide enqueued

task requests.

 Threads, perhaps from a thread pool, are
dispatched to handle each task.

 Tasks must be independent in order to fully realize
the benefits of concurrency.

 Example:
 Concurrent execution of dependency analysis

tasks.

Pipeline Execution

 Structure:

 Composed of cells.

 Each cell has a message queue and a child thread
that processes messages.

 Result messages may be sent on to another cell.

 Each cell type is defined by the way it overrides a
virtual message processing function.

 Example:

 Project #4, CSE687 – OOD, Spring 2010

Enterprise Computing

Enterprise Computing

 Large Enterprise Applications are usually
constructed as a federation of lower level
systems and subsystems.
 The federation is glued together with network based

middleware, or more commonly now, with web
services.

 Example: PeopleSoft, used by S.U.
 Payroll and accounting

 Academic planning and record keeping

 Employee services

 A variety of web applications, like mySlice.

Enterprise App: Project Center

 Federation of tools supporting Software
Development
 Open source tools with integrating wrappers:

 CVS – configuration managment

 Nant – sofware builds

 Nunit – software testing

 Newly developed and legacy tools:
 Bug tracker, change tracker, project scheduler

 http://www.ecs.syr.edu/faculty/fawcett/
handouts/webpages/ProjectCenter.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/ProjectCenter.htm

Federation Structure

 Federated Systems often are based on one of
two design patterns:

 Façade provides an integrating interface that
consolidates a, possibly large, set of system
interfaces into a single application interface in an
attempt to make the system easier to use than
working directly with its individual parts.

 Mediator serves as a communication hub so that
all the various subsystems need know only one
interface, that of the mediator.

Collaboration System

 System that focuses on sharing of processes and
products among peers with a common set of
goals.
 Primary focus is organizing and maintaining some

complex, usually evolving, state:
 Software development baseline
 Set of work plans and schedules
 Documentation and model of obligations
 Communication of events

 Example:
 Collab – CSE784, Fall 2007,

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

Other System Structures

Agent-Based

 System uses Software Agents
 Semi-autonomous, mobile, task oriented software

entities
 May be scheduled
 Provide scriptable user specific services

 Collect information from a large set of data
 Perform analyses on changing baseline and report
 Conduct specific tests
 Make narrowly specified modifications to baseline

 Example:
 CSE681 Project #5, summer 2009,

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE
681/Projects/Pr5Su09.doc

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Master’s Thesis Research
Examples

 The following are all based on Software
Matrix structure – Autonomous cells often
used with mediator

 Software Matrix – Gosh, 2004

 Self Healing Systems – Anirudha, 2005

 Cross Platform Development – Appadurai, 2007

 Model-Driven Development – Patel, 2007

 http://www.ecs.syr.edu/faculty/fawcett/hand
outs/webpages/research.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm

Other Structures

 TeraScale computing:
 Buzzword defined by Intel to describe parallel

execution on a many core processor.
 Expectations are chips with scores of processors

 Cloud Computing
 Buzzword adopted by many to describe remote

execution and storage of applications defined locally.
The cloud provides a stable endpoint that may map
onto any one of a large set of computing resources.

 Example:
 Microsoft’s Azure platform

SMA Projects

 Project #2
 Cooperating monolithic processes

 Composit Text analyzer
 Metadata generator

 Project #4
 Client-Server

 May have multiple concurrent clients
 Both client and server use DLLs for significant processing

 Project #5
 Federation of clients and servers

 Focuses on Software Repository server
 May wish to use virtual servers

THE END

