aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

EBRﬁB&I"I 2| BH&THRE

What is Program Structure?

= Partitions
= Separation of concerns

= Communication

= How do the parts make requests and send
notifications?

= Sharing
= How is data shared between the parts?

= Control

What 1s Program Structure?

= Logical:
= Interfaces, classes, and class relationships

= Package:

= Package dependency tree, as shown in OCD package
diagrams

= Subsystems, e.qg., collection of packages separated by
interfaces with each focused on specialized processing

* For a radar those might be: signal processing, beam forming,
data management, operator control, communication.

= Execution:
= Monolithic Program, e.g., an exe

= Program with loadable Dynamic Link Libraries (DLLs)

- Cooperating processes, e.q., client-server, server
federation, etc.

Parsing Facility

Executive
AN

ConfigureParser Formatter Display

Parser Parser

IRule

-breakingRules : vector<IRule*>
-nonbreakingRules : vector<IRule*>

-ITokColl : ITokCollection* +addAction(in pAction : 1Action*) : void) +doAction(in pTokColl : ITokCollection*) : void
+addRule(in pRule ; IRule™) - void +doActions(in pTokColl : ITokCollection*) : void

+parse() : bool +doTest(in pTokColl : ITokCollection*) : bool
|DerivedRuIe2| |DerivedRuIe1|

-actions : vector<|Action*> IAction

ITokCollection

|
O— | O —
|
|
|
i
I
\
XmlParts or SemiExp istream
/\ /\

-pToker : Toker*
-toks : vector<string> -scToks : string

+get() : bool -putbacks : vector<char>

+operator[](in n : int) : string +getTok() : string

+find(in tok : string) : int +attach(in name : const String&, in isFile : bool) : bool
+remove(in tok : string) : bool

ifstream istringstream

Program Structure Contents

= Data Driven * Thread & Event Driven
= Client server = Single Threaded
° Three tier Apartment (STA)
= Model-View-Controller © Parallel execution

= Communication Driven > Pipeline execution
> Peer-to-peer = Enterprise Computing
= Service oriented © Federated systems

= Components

DATA DRIVEN STRUCTURES

Data Driven Structures

= Some program structures are driven by the
presentation and management of data:

= Client-Server

o Three-Tier
Model-View-Controller
Publish and Subscribe

O

a

Structure: Client-Server

= Behavior:

= Server is passive, waits for client requests
= Server handles multiple concurrent clients

= Without additional structure system may become
tightly coupled and difficult to change

= Example:
= Web server and browser clients
- Every class that holds a reference to another

Static Webpage Model

http::GET

CSS

Javascript \

N

Behavior

x Presentation

styles

Document Object Model Renderer
(DOM)

Flow Model

Semantic
Structure

Web Server

Asp.Net Dynamic Serving Model Server Object Models
Request, Response,
Session, Application,

h‘\ % C#

Event
handlers

Postback = http::POST via Javascript event handler from a Form control

Control
Model CsSs

Relational
Data
Model

Document Object Model
(DOM)

Renderer

Flow Model
Box Model

Ajax Serving Model

http::GET => client page load

i Web Server
Server Object Models

Request, Response,
Session, Application,

Asp Page

/ Model
HTML
Javascript ‘\ C#

Event

String sent to C# Control event handler

handlers

Document Object Model

(DOM)

Browser

JavaScript
Control event
handler

L :
x

\ JavaScript
CallBack

function

String sent to browser’s callback function

Relational
Data

Flow Model

Model

Sharing Data

= Relational Databases —SQL Server
ACID — Atomicity, Consistency, Isolation, Durability
ACID => Transactional

» File Systems
= Ad. Hoc. in-memory repositories
= Key-Value Stores — Memcached

= Extensible Record Stores — Google’s Big Table
Distributed partitioned tables

= Document Stores — CouchDB
Multi-indexed objects aggregated into domains

Separation of Concerns

» Except forthe simplest of applications it's not
a good idea to bind presentation, control, and
data together.

= There often are many views, more than one
application mode, many sources of data.

= If we bind these all together we get spaghetti

* Very hard to test, hard to maintain, hard to
document.

Structure: Three-Tier

= Structure:

= Partitioned into presentation, application logic,
and data management.

= Intent is to loosely couple these three aspects of
an application to make it resilient to change.

= Examples:
© Most well-designed applications.

Model-View-Controller

= Structure:

MVCis a refined version of the Three-Tier structure,
intended to support multiple views and data models.

Models do all data storage management.

Views present information to user, format output but
do no other transformations on data.

Controllers accept inputs, implement application
processing, and use Models and Views to provide the
application’s behavior.

Application phases often have one controller each.
Models may be shared between controllers.

= Examples: Project #2 Fall ‘10, Asp.Net MVC

Basic MVC Structure

MVC - With View &
Application Models

= Views and Models often have some
substructure, e.g.:

Applic | Data

View - View Model

= Aview is what gets rendered

= A view modelis an abstraction that:

= Defines resources that many be used in several
places.

= Defines styles that may be used in several places

= Defines an object model for the application to
manipulate

Application vs. Data Models

= Application model

= Defines classes for all the entities a user knows and
cares about, e.g., orders, customers, products, etc.

= Data model

= Defines wrapper classes for tables and stored
procedures

= Manages connections

= Object to Relational Mapping
- Relationships between application objects and data

Object Relational Mapping

= Data Layers often have an ORM substructure

= Examples: Hibernate, Microsoft Entity
Framework

N-Tier Structure

= So, the three tier MVC has morphed into a
five tier V-VM-C-AM-DM

O

O

O

View —what gets rendered
View Model — an abstraction of the view

Controller — routes View events to handlers in the
Application Model

Application Model — classes that model the
"business” logic

Data Model — models data storage tables

MVC - Multiple Controllers

Structure: Publish & Subscribe

= Structure:

= Many to many connection of Publishers and
Subscribers.

= Each subscriber registers for notifications with a
specific interface.

= Publishers send notifications to all enrolled
subscribers when a publisher event occurs.

= Publishers can support multiple events.
-~ Publishers don’t need to know anything about the

Publisher

Subscriber

Publisher

Subscriber

Subscriber

Layered Structure

= Provides a structure based on:

= System Services —things the user doesn’t think
about

- Communication, storage, security, file caching, ...

= User Services — things the user manipulates as
part of the use of the system

* Input, Display, Check-in/Check-out, ...

= Ancillary —Things that are not part of the system
mission but are necessary
- Logging, extension hooks, test hooks, ...

Component-Based

= Structure:

= A componentized system is composed of an
application with many pluggable component
parts.

= A component is pluggable if it implements a plug-
in interface, published by the application, provides
an object factory for activating its internal objects,
and is packaged as a dynamic link library (DLL).

= Example:
o http://www.ecs.syr.edu/faculty/fawcett/handouts/

CSE681|code|Parser| almost imilements.

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Parser/

Shielding One Part of a System from
Another’'s Implementation

Factory | Interface

Factory creates instances of
package’s classes, so the
client does not need to.

Package K

It then returns an interface
pointer, bound to class #3, to
the client. The interface and
its implementing class #3

acts as a mediator for all of ‘
the other classes in the
package.

Interface

All of Factory’s functions can
be static, so the client does
not need to create an
instance of that either. class #1

Package K has no binding to
Package N's implementation. class #2
It only needs to include the
header files describing the
Interface and Factory.

Package N

Example Componentized System

Asynchronous call
|

Asynchronous call :
i |
|
|
|

Communication Driven
Structure

Communication Driven Structure

= When users, data, and application logic are
distributed across processes and machines
communication becomes important:

= Peer-to-peer
= Service oriented

Structure: Peer-To-Peer

= Behavior:

= Peers interact, sending and receiving messages from
each other.

o Peers are sometimes identical.

= Many Peer-to-Peer models support central or
distributed locater services.

= Examples:

= http://www.ecs.syr.edu/faculty/fawcett/handouts/
CoreTechnoIocues/SocketsAndRemotmq/code/
WCF Fawcett Examples/WCF Peer Comm)/

© Bit-Torrent

http://www.ecs.syr.edu/faculty/fawcett/handouts/CoreTechnologies/SocketsAndRemoting/code/WCF_Fawcett_Examples/WCF_Peer_Comm/

Peer-To-Peer Asynchronous
Message-Passing Structure

Each Peer is a separate process
possibly on separate machines

Peer UIForm

Send thread created by

client main thread. Remoting Object

Receive Thread
created by Run-Time
system

Static Collection
Of client
references Servers use message

. IDs or types to figure
client \ out what to do with

Peer UIForm

each message.

Send thread Activated Object
(Receive) Thread

:l:l:'—b Remate Communication \—m

Main thread main thread
Posts message gets message

Processing

Processing

Acwer client
Activated Object Send thread main thread

gr;ilr;‘ir::se (Receive) Thread posts message

\DID:“—\ Remote Communication 4—|:|I

Static Collection
Of client
references

Communication Types

= Remote Procedure Call (RPQ):

Supports function call semantics between processes and
machines.

Sends messages over wire but provides stack frames for
client and server to support the function call model.

Examples: COM, CORBA, WCF

= Message Passing:
Sends message with encoded request and/or data
Message contains endpoint information for routing
Directly supports asynchronous processing
Examples: Internet, Web, SMA and OOD projects

Communication Patterns

= TwoWay:

Synchronous Request, wait for reply
= Duplex:

asynchronous request, reply sent as callback
= OneWay:

Send Message and forget

= Receiver may send result back to requester as a
subsequent message

= Examples:

M

Communication Style

= Push Model

= Send information to a remote endpoint via a
service call, perhaps via a message:

void PostMessage(Message msg);

= Pull Model

= Retrieve information from a remote endpoint via a
service call, perhaps by a streaming download:

Communication Style

= Pull Service and Caching

= A Software Repository could expose a WCF service
that provides information about its package
contents including dependencies.

= That allows a client, for example, to pull from the

Repository all files in a package dependency list that
are not already in its file cache.

Service Oriented

= Structure:
Service oriented systems are simply client server.

Usually the server is implemented with a web service
or operating system service.

Web service is a web application that provides an
interface for client software to access.

OS service is a system application that provides an
interface for requests and an administration interface for
setting service startup and shutdown policies.

Windows Communication Foundation (WCF) has
extended that model to support hosting in:

desktop application

windows service hosted with Windows Service Control
Manager (SCM)

web service hosted by Internet Information Server (lIS).

uDDI
Registry

Web Site

Internet

-¢—Discovery > DISCO file

<4—Interface

<4—SOAP Messages WEB Service

C# Web Services, Banerjee, et. al.,
WROX, 2001

REpresentational State Transter

= REST is a message-passing communication
system built on the HTTP protocol, using the
Web verbs:

Get —retrieve a resource without changing the state of
the server.

Post — send information to the server that may change
Its state.

Put — place a resource on the server.
Delete — remove a resource from the server.

= |ts encoding is UTF text, not SOAP or some other
complex messaging format, but may use
encryption, as in HTTPS.

Thread & Event Driven
Structure

Threading Driven Structure

= Some program structures are a consequence
of specific threading models

= Event-driven and Single Threaded Apartment
(STA)

o Parallel execution
= Pipelined execution

Structure: Event-Driven

= Structure:

= Events from multiple concurrent sources generate
messages which are enqueued, and typically are
processed by a single handling thread.

= Messages are dispatched to event-handlers for
processing.

= Example:

[m|

Event-Driven

Raw Input Queue

keyboard
Main thread in active window
Window Manager blocks on call to getMessage until
a message arrives. Then itis
dispatched to an event handler
associated with that message

messages filtered for
this window
other posted by
operating system

devices
thread

event
handler
function

Windows Message
Queve Active Window

Single Threaded Apartment

= Graphical User Interfaces all use the STA model.

Possibly concurrent clients send messages to the GUI's
message queue.

All messages are retrieved by a single thread, the one that
created the window.

Child threads, often used to execute tasks for the GUI, are
not allowed to directly interact with the window.

Instead they must send or post messages to the window's
message queue.

This is often done with Form.Invoke or Dispatcher.Invoke.

Parallel Execution

= Structure:

= Often concurrent programs provide enqueued
task requests.

= Threads, perhaps from a thread pool, are
dispatched to handle each task.

= Tasks must be independent in order to fully realize
the benefits of concurrency.

= Example:

= Concurrent execution of dependency analysis
ks.

Scheme for Parallel Execution of Dependency and Type Relationship Analysis
Projects #1, #2, #3, #4

Start Pass #1

Type Analysis

Partial TypeTable

Thread with filespec

ﬂlslspacs

Type Analysis

Pal'tii.a-l-"‘l‘ype]‘able

Type Safe

Blocking Queue Type Analysis

Y
Merge Type
Tables

Type Analysis

Merge Results
A

Dep, Relation

1 Analysis TN - A
Paﬂi?l Résull:s y Thread \:lrt‘r;fllespec Start Pass #2

Type Table
Dep, Relation
Analysis T -

Filespecs -~ '
_ And -
Type Table

Dep, Relation
Analysis

Dep, Relation
Analysis

Pipeline Execution

= Structure:
= Composed of cells.

= Each cell has a message queue and a child thread
that processes messages.

= Result messages may be sent on to another cell.
= Each cell type is defined by the way it overrides a
virtual message processing function.

= Example:

o ill|i|| I| | iiiil_l || || | il||ll IIII

Cell Processing '

AMessageHandler AMessageHandler

BQ BQ target
PostMessage PostMessage PostRemoteM 95339

Msg = dispatch(msg) Msg = dispatch(msg)

Executive makes these
connections

cell Structure winterfaces

IMsgPass

AN

BQueue<Message> |

- AbstractCell vector<IMsgPass*> |
tthread

|
|
|
b g
I Thread_Processing<CellProc> |

/N

ConcreteCell
CellProc
#dispatch(in msg : Message) : Message

AMessageHandler
BQ

PostMessage lRemoteMesé@ge

Y

Msg = dispatch{msg)

Enterprise Computing

Enterprise Computing

= Large Enterprise Applications are usually
constructed as a federation of lower level
systems and subsystems.

The federation is glued together with network based
middleware, or more commonly now, with web
services.

= Example: PeopleSoft, used by S.U.
Payroll and accounting
Academic planning and record keeping
Employee services
A variety of web applications, like mySlice.

Enterprise App: Project Center

» Federation of tools supporting Software
Development

= Open source tools with integrating wrappers:
= CVS - configuration managment
* Nant —sofware builds
* Nunit — software testing
= Newly developed and legacy tools:
* Bug tracker, change tracker, project scheduler

= http://www.ecs.syr.edu/faculty/fawcett/
handouts/webpages/ProjectCenter.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/ProjectCenter.htm

Project Center Packages
A viable configuration

[1

1

Project Center

ASP UIF

Project Center
WinForm UIF

Bug Tracker

vy

Config Mgmt

Y

Project Scheduler

l

Web Service
Communications

A

Change Log

Data Manager

N

Federation Structure

* Federated Systems often are based on one of
two design patterns:

Facade provides an integrating interface that
consolidates a, possibly large, set of system
interfaces into a single application interface in an
attempt to make the system easier to use than
working directly with its individual parts.

Mediator serves as a communication hub so that
all the various subsystems need know only one
interface, that of the mediator.

Collaboration System

= System that focuses on sharing of processes and
products among peers with a common set of
goals.

= Primary focus is organizing and maintaining some
complex, usually evolving, state:
* Software development baseline
* Set of work plans and schedules
- Documentation and model of obligations
- Communication of events

= Example:

= Collab —CSE784, Fall 2007,
http://www.ecs.syr.edu/faculty/fawcett/handouts/web

ages/CServ.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

Stores management informaton
{work packages, schedules, job descriptions),
provides collaboration tools

Collaboration

Retrieve Product Status
Server

Dependency-based Storage
of certified code and
documents, provides
product analysis tools

Run collab. Tools
Yiew reports

| |
EH’Eh;‘I;' Docs, *

Whitehoard collab

Check-in .
Client Check-out Repository

Run analysis bools Server
Yiew reports

Supply code to Test Harness

Post test results bo Repository Runs certified tests
l on cerbfied code

e

All development
occurs here Posts
resulls bo servers .

Post test configurations
- Test Harness

Yiew reports Server

Other System Structures

Agent-Based

= System uses Software Agents

= Semi-autonomous, mobile, task oriented software
entities

= May be scheduled
= Provide scriptable user specific services
- Collect information from a large set of data
* Perform analyses on changing baseline and report
* Conduct specific tests
= Make narrowly specified modifications to baseline

= Example:

© CSE681 Project #5, summer 2009,
http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Master’s Thesis Research
Examples

= The following are all based on Software
Matrix structure — Autonomous cells often
used with mediator
= Software Matrix — Gosh, 2004
= Self Healing Systems — Anirudha, 2005
= Cross Platform Development — Appadurai, 2007
= Model-Driven Development — Patel, 2007

= http://www.ecs.syr.edu/faculty/fawcett/hand

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm

Other Structures

= TeraScale computing:

= Buzzword defined by Intel to describe parallel
execution on a many core processor.

* Expectations are chips with scores of processors

* Cloud Computing

= Buzzword adopted by many to describe remote
execution and storage of applications defined locally.
The cloud provides a stable endpoint that may map
onto any one of a large set of computing resources.

© Example:
- Microsoft’'s Azure platform

SMA Projects

= Project #2
= Cooperating monolithic processes
- Composit Text analyzer
- Metadata generator
* Project #4
= Client-Server
= May have multiple concurrent clients
* Both client and server use DLLs for significant processing
= Project #5
- Federation of clients and servers
- Focuses on Software Repository server

THE END

