
XML, XPath, and XSLT
Jim Fawcett

Software Modeling

Copyright © 1999-2017

Topics

• XML is an acronym for eXtensible Markup Language.

• Its purpose is to describe structured data.

• XPath is a language for navigating through an XML

document.

• It’s used to select specific pieces of information from the

document.

• XSLT is a language for transforming XML into

something else.

• Often used to generate HTML or another XML document.

Introduction to XML

• XML is a tagged markup language designed to

describe data: LectureNote.xml

• XML has only a couple of predefined tags.

• All the rest are defined by the document designer.

• XML can be used to create languages.

• XML is commonly used to:

• Define data structures

• Define messages

• Create web pages

LectureNote.xml

Validation

• To be correct XML a set of markup needs only to be well

formed; see Well-Formed XML.

• To determine if an XML document belongs to some

document type, XML uses either:

• Document Type Definition (DTD)

• XML Schema

XML that satisfies a Schema or DTD is said to be valid.

• DTDs and Schemas define allowable tags, attributes, and

value types, and may also specify where these may occur

in the document structure.

• XML schemas are written in XML; DTDs are not.

XML Element

• Elements are building blocks for XML documents.

• Element sytax:

• Elements are composed of tags, attributes, and a body:
<tag *[attribName=“value”]>body</tag>

example:
<book author=“Prosise”>Programming

.Net</book>

• All parts of the element are Unicode text.

• Body may contain both plain text and markup, e.g., lower-

level elements.

• Tags and attributes are case sensitive and user defined.

Element Naming Rules

• XML names are composed of Unicode

characters.

• Tag names must begin with a letter or underscore.

• Other tag name characters may contain characters,

underscores, digits, hyphens, and periods.

• Names may contain neither spaces nor start with the

string “xml” or any case variant of “xml”.

• Attribute names follow the same rules as tag names

and are also required to be unique within the tag in

which they are embedded.

Element Body Rules

• Element bodies may contain plain text or markup

or both.

• By plain text, we mean character strings with no

markup.

• Markup is text with embedded markup characters:

• & < > ‘ and “

• Elements may also contain CDATA sections, designed

to support text including large sections of markup

characters but not interpreted as markup:

• <! [CDATA[…]]>

• These cannot be used to carry binary data.

Illegal Characters

• Certain characters are reserved for markup and are illegal

in names and payload text:

< < less than

> > greater than

& & ampersand

' ‘ apostrophe

" “ quotation mark

• We represent them in plain text with the escape

sequences shown on the left, e.g.: < if we want a “less

than” character in payload text.

XML Structure

• An XML document is defined by a standard opening
processing instruction:
• <?xml version=“1.0”?>

• Processing instructions and comments are the only XML tags that
are not closed (see next page)

• The XML body starts with a single root element.

• An element is text of the form:

<someTag anAttribute=“someValue”>payload text</someTag>

where the payload may be one or more child elements or
simply text or both.

• Comments take the form:

<!-- a comment -->

Well-Formed XML

• XML has a few rules:

• There may be only a single root.

• All tags, except for processing instructions, must be

closed:

• <myTag someAttrib=“value”>…</myTag>

• <myTag someAttrib=“value”/>

• Attribute values must be quoted.

• XML tags are case sensitive.

• All markup and payload is text with one exception:

• An element may define a CDATA section.

• CDATA is not parsed, and so may contain anything except the

CDATA terminator.

CDATA

• A CDATA section has the syntax:

<![CDATA[…]]>

• CDATA is not parsed except to look for the

terminator “]]>” so it may containing anything.

• It is not a good idea to try to store binary data in a

CDATA section because the “]]>” sequence could

appear as part of the binary data.

XML Documents

• An XML document is well-formed XML if it
contains:
• A prolog: <?xml version=“1.0”?>

• An optional link to an XSLT stylesheet

• An optional reference to a DTD or schema, used for
validation

• Optional processing instructions

• Optional comments

• A body with a single root, which may contain any
number of text sections, elements, and comments

• An optional epilogue consisting of comments and
processing instructions

Processing Instructions

• Processing instructions are used to capture information

for XML parsers and proprietary applications.

• Syntax: <? PI-target *[attrib=“value”]?>

• The most common processing instructions are:

• Document banner:

<?xml version=“1.0” encoding="utf-8"?>

• XSLT style-sheet reference:

<?xml-stylesheet type="text/xsl" href="courses.xsl"?>

• Other hypothetical instructions:

• <? robots index="no" follow="yes“ ?>

• <? word document=“aDoc.doc” ?>

Namespaces

• Namespaces are declared with special attributes and
prefixes:
• <tag xmlns:prefix=“uri”>body</tag>

• The uri should be unique, so current style is to use a url, e.g.,
www.ecs.syr.edu.

• These urls need not be bound to some real site.

• Attributes do not inherit the namespace of their element, so you
need to do this:
<tag xmlns:a=“uri” a:myAttrib=“value”>body</tag>

• Namespaces are used to distinguish different elements
that happen to have the same tag name but are not
intended to mean the same thing.
• Perhaps, they have different structures.

http://www.ecs.syr.edu/

Example

<?xml version=“1.0”?>
<!-- XML test case -->
<LectureNote course=“cse681”>
<title>XML Example #1</title>
<reference>
<title>Programming Microsoft .Net</title>
<author>
Jeff Prosise
<note company=“Wintellect”></note>

</author>
<publisher>Microsoft Press</publisher>
<date>2002</date>
<page>608</page>

</reference>
<comment>Description of PCDATA</comment>

</LectureNote>

LectureNote.xml
Webmonkey | Reference: Special Characters

Note: We

can have

both text and

child nodes

in the

payload of

an element.

LectureNote.xml
http://hotwired.lycos.com/webmonkey/reference/special_characters/

XML Node Structure

Lecture Note

title reference comment

title author publisher date page

Lecture Note::title

reference::title

note

XML declaration

XML Parse Tree

Lecture Note

title reference comment

title author publisher date page

Document

XML comment

textNode textNode

textNode textNode

note

textNode textNode textNode

A

A

XML declaration

XML Presentation

• There are several ways XML data can be

presented to a user:

• XML data island in an HTML page, interpreted by script

• XML file interpreted by script in an HTML page

• XML island or file bound to an HTML table

• XML file bound to a GridView control

• XML styled with an XSL style sheet

• Essentially, the XSL sheet creates viewable HTML

• Read, interpreted, and modified by an application

• The .Net System.XML library provides very effective support for

this.

Introduction to XPath

• XPath provides a navigation facility within XML

documents

• XPath is used to extract specific information from XML

documents:

• In XSL style sheets

• <xsl:template match=xpath expression>

• <xsl:for-each select=xpath expression>

• <xsl:value-of select=xpath expression>

• <xsl:apply-templates select=xpath expression>

• In C# programs that use the XML DOM

• XmlNode.SelectSingleNode(xpath expression)

• XmlNode.SelectNodes(xpath expression)

• In Javascript code

XPath Components

• XPath syntax contains the following components:
• Steps

• A directory-like syntax for defining elements and attributes at some
specified level

• /customers/customer/lastName

• /customers/customer[@status = current]

• Descent steps

• Steps that may occur at any level in an XML structure

• //lastName

• Filters

• Elements or attributes that must be present to result in a match

• /customers/customer[country]

• Predicates

• Condition that must be met to result in a match

• /customers/customer[country=“United States of America”]

XPath Node Set Functions

• XPath provides a number of functions that operate on

sets of nodes:

• count()

• The number of nodes in a set

• /customers/customer[count(order) = 1], e.g., customers with only one

order

• position()

• Returns the position of an XML node in a set of nodes:

• /customers/customer[position() = 1], e.g., first customer

• last()

• Returns the ordinal of the last node in a set

• /customers/customer/order[position() = last()], e.g., last order of each

customer

XPath String Functions

• XPath has three commonly used string functions:

• contains()

• Returns true if string in first argument contains the second

• //customer[contains(jobTitle,”chief”)]

• string-length()

• Returns integer number of characters in string

• //customer[string-length(lastName) > 3]

• substring()

• substring(str,start,length) returns substring of str starting at

character start with number of characters equal to length

• //customer[substring(city,0,3) = “Los”]

Other XPath Functions

• XPath number functions

• sum()

• sum(products/product/price)

• Boolean functions:

• false()

• true()

• not()

• //customer[not(count(orders) = 0)]

XPath Expressions

• XPath supports numerical, Boolean, and

comparison expressions:

• Create complex predicates

• //customer[count(orders) > 0 and State =

“California”]

• XPath unions

• Return the union of two node sets

• //books | //articles

XPath Axes

• XPath axis specifies the direction of node selection from

the context node:

• Child

• Child nodes of the context node

• Parent

• Parent node of the context node

• Ancestor

• All ancestors of the context node

• Descendent

• All descendents of the context node

• Attribute

• Attributes of the context node

Axes Examples

• /customer/lastName

• /child::customer/child::lastName

• //firstName

• desendant::firstName

• //drive/@letter

• //drive/attribute::letter

• //file/../@name

• //file/parent::folder/@name

• //folder[parent::folder and not(child::file)]

• Subdirectories with no files

Introduction to XSLT

• XSLT is an acronym for eXtensible Stylesheet

Language – Transform.

• Designed to transform an input XML parse tree

into a parse tree for the output—often XML or

HTML.

• The transformations are defined as templates in a

style sheet, with extension xsl.

• .Net provides several classes to support this

operation.

XSLT Template Processing

• <xsl:template match=XPath expression>

// processing defined for the

// matching node set

</xsl:template>

• Processing consists of:
• Literals that are sent directly to the output

• Templates with their results sent to the output

• An XSLT stylesheet can have an arbitrary number of
templates.

• Templates are processed at two points in time:
• When the transformation is first invoked

• Whenever <xsl:apply-templates /> is encountered during
processing

apply-templates

•<xsl:apply-templates />

• The current selection is matched against all

templates in the stylesheet.

• Each match executes the matching

template’s processing.

• The results are sent to the output.

for-each

•<xsl:for-each select=XPath

expression>

// processing for selections

</xsl:for-each>

• Each element of the matching node set is

processed according to the body of the

template.

• Results are sent to the output.

value-of Template Instruction

•<xsl:value-of select=XPath

expression />

• Returns the value of the selected node

• The selection is from the context defined by

the template selection (see previous slide).

Example

• The links, below, refer to an example of XSLT processing, executed

on a web server, to render a web page based on contents of an XML

file:

• www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTd

emo.aspx

• www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFi

le.xsl

• www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFil

e_NoStyleLink.xml

• Other references for XSLT

• www.w3schools.com/xsl/xsl_languages.asp

• http://www.zvon.org/xxl/XSLTutorial/Books/Book1/

• http://directory.google.com/Top/Computers/Data_Formats/Markup_Langua

ges/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.w3schools.com/xsl/xsl_languages.asp
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

