CSE 681: Software Modeling and Analysis

Project 3:

Distributed Requirements Database

Operational Concept Document

Version 1.0

By

Tushad Mehta

24h June 2003
Table of Contents
11.
Executive Summary

22.
RequirementsDB Context Diagram

33.
RequirementsDB Module Diagram

3Client Application Module Diagram

3Logon UI Module

4Main Client User Interface Module

4Requirement Modification UI Module

4Client Communication Module

5Server Application Module Diagram

5Main Server Module

5File System Module

5Server Communication Module

64.
RequirementsDB Data Flow Diagram

6Logon Process

7Client Controller Process

7Client Communication Process

7Display Process

7Server Controller Process

8Server Communication Process

8Class Library Processing

85.
User Interface

8Interface Views

8Logon User Interface

9Main Application Display

10Edit Requirement Dialog Window

11Add New Requirement Dialog Window

12Interface Interactions

12Load the XML File

12View List through scrollable List view

12Selecting a particular requirement through mouse click

13Adding a new Requirement

13Editing an existing Requirement

13Deleting an existing Requirement

136.
Activities

13Client Activities

15Server Activities

177.
Client Server Communication

188.
Events

209.
Analysis

20Analysis 1: .Net Remoting Functionality

20Analysis 2: XML File Load time

2110.
Issues

21Issue 1: XML file size

22Issue 2: Scalability

22Issue 3: Security

22Issue 4: Operating System crash

23Issue 5: XML data store Versus Relational database

2311.
Future Enhancements

23Availability of the system over the Internet

24Mapping between A and B Level Specifications

24Encryption of the Messages being sent across

25Admin and other access roles for better

25Search Mechanism

25Miscellaneous Enhancements

2612.
Summary

2713.
Appendix

27Prototype

27Server Console Application

27Server.cs

28file_handler.cs

29Client Application

1. Executive Summary

Software application development starts from a set of requirements obtained from the users / stakeholders of that system. Often, this set of requirements is generated by a collaborative effort of several people drawn from different functional areas. Unfortunately, this very important requirement gathering phase is often overlooked and left outside the scope of a software development project. This requirements list is never a static entity. It changes continuously during the project lifecycle.

Requirements for a particular application need to be gathered, assimilated and produced on demand. Most of the time this process is performed through face-to-face meetings. While there is an advantage in having such direct interactions with the stakeholders it is often not convenient to setup such meetings. Having an efficient software repository of such requirements for any project is a definite plus. It reduces the overhead that comes with such administrative work such as meeting arrangements and scheduling. This software repository of requirements will eradicate the need for sending a combination of emails, word documents, voice mails etc as a step toward requirement gathering and its management. Hence, the necessity of an application to maintain such a list.

Most software projects use a database application that functions as a store for the requirements of a project. The architecture of the RequirementsDB database program that this document attempts to address is a distributed system utilizing an XML (eXtended Markup Language) file based data store. Multiple clients would be able to access the file store through a server application.

The RequirementsDB application will be made possible using Microsoft’s .Net Remoting functionality. The client application would be able to communicate effectively with the server residing on another machine. Additional functionality will also be implemented that would allow multiple clients to access the same data store simultaneously. This application would be capable of handling more than one project requirement XML file store. The server application would be able to handle many project teams. Users working on a single project i.e., working with a single XML file would be notified if a requirement in that project were modified.

Through a graphical user interface provided for the client application, the user will be able to connect to the appropriate XML files store, view the requirements, add additional requirements, edit existing requirements, and delete requirements.

As with any software application, there are always certain critical issues that need to be taken into consideration during the design phase. These issues are discussed and elaborated upon in the issues section of the document.

There is also always scope for improvement and enhancement. The application shall be designed in such a way so as to enable easy addition of new features and enhancements in the future, which almost invariably occurs. These enhancements will also be described toward the end of the document.

2. RequirementsDB Context Diagram

The context diagram shown in Figure 1 depicts the relationship the application has with the environment in which it operates and some external entities namely; the inputs the application expects, the outputs it is supposed to generate.

The diagram shows that the user first needs to login to get access to the system. The login parameters required would be username and password. Once the parameters are passed to the server where the authentication process would be undertaken and acknowledgement would be sent back to the client that is requesting access. Once the client has access, the user may input choices like “Add”, “Edit/View”, and “Delete” requirements. All this is done through the provision of a graphical user interface. After completion of the processing task, the display is refreshed with the modified information. Any errors occurring during the processing are taken care of through exception handling mechanisms in the processing section and are displayed to the user through the graphical user interface.

[image: image1.wmf]Graphical User

Interface or

Command Line

Console

Application

Client Processing

Graphical User

Interface

Commands

Add/Edit/Del

Login parameters

(User/Paswd)

Error

Messages

Graphical User

Interface

File System

Proxy

Remote

Object

TCP

Communication

Channel

Server Processing

Error

Messages

File Handle

File Name

Command Line

Graphical User

Interface

Display

Requirements

Figure 1: RequirementsDB Context Diagram

The server would handle all the requests made by the different clients and would be responsible for maintaining the data integrity of the data structures that are being accessed by the clients so as to prevent conditions such as deadlocks, race around conditions etc. The server would also handle any errors/exceptions that could happen during the operation of the application.

The communication between the client and server takes place through a TCP channel that is set up using Microsoft’s .Net Remoting feature. The server handles all communication between the clients and itself. The server instantiates objects of classes that are Marshaled by Object reference, and the clients create a proxy of that object.

The contents of each requirement in the XML file contain the following items:

· The requirement number.

· The Requirement title.

· The description of the requirement

· The type of requirement i.e., A or B (Customer or A- level specification, Developer or B-level specification)

· The date the requirement was created.

· The date the requirement was last modified.

· The responsible individual or stakeholder for the requirement.

3. RequirementsDB Module Diagram

In this section, the module diagrams of the client and server will be shown and the purpose each module serves is described.
Client Application Module Diagram

The partitioning of the Client Application into different modules is as shown in Figure 2.

[image: image2.wmf]Main Client UI

Module

Requirement

Modification

UI Module

Client Communication Module

Logon UI

Module

Figure 2: RequirementsDB Client Module Diagram
Logon UI Module

This module is called at startup of the client application. It provides a means of authenticating the user. The interface is a Win Forms based graphic user interface with two text boxes for the username and password, and two buttons; namely logon and cancel. It accepts user input (username and password) and calls the communication module, which then prepares a channel of communication to the server, and queries the server with the parameters passed. If authentication was successful, the logon module then loads the main client user interface module and the user can begin to use the application.

Main Client User Interface Module

This module provides the main graphical user interface. All events that are generated through the various objects on the user interface i.e., button clicks, menu-selections, etc are handled by the main client user interface module. It calls upon functions in other modules depending on the event / instruction being executed at that point of time. The user interface is a Win Forms based Graphic User Interface with a list view for viewing all the requirements in the database. Selections for adding, editing, and/or deleting requirements are made through this module. These selections can be made through the buttons provided. It is also responsible for spawning worker threads to handle background processing while also simultaneously maintaining the UI display.

Requirement Modification UI Module

This module is called at the execution of a button click event on the Main Client user interface Module. This module handles the actual addition, modification and/or deletion of a requirement. It calls the appropriate functions in the client communication module to communicate with the server and perform the requirement manipulations. This module interfaces with the main client user interface module and the client communication module. This module also verifies whether the client/user that is modifying or editing the requirement is also the responsible individual.

Client Communication Module

This module enables the client application to communicate with the server application. It initializes the channel that will be used for communication, registers it, and performs activation of remote objects. All messages sent and received by the client are handled through this module. This module is called from the logon, main client user interface and the requirement modification user interface modules. For this application, invoking the methods directly on the remote object is a better model than working on a local copy. However a method on a remote object can be invoked only if a reference to it is obtained. Obtaining a reference to the remote object requires the object to be instantiated first. This client module asks the server for an instance of the object, and the server returns a reference to a remote instance.

Server Application Module Diagram

The partitioning of the Server Application into different modules is as shown in Figure 3.

[image: image3.wmf]Main Server

Module

File System

Module

Server

Communication

Module

Figure 3: Server Application Module Diagram

Main Server Module

This is the executive module of the server application. It is a console application that is responsible for directing the flow of data throughout the application. This is the application that needs to be started up first before any of the clients can get access to the XML file store. On start up, it calls a function in the communication module that creates a channel that the clients would use to communicate with the server.

File System Module

This module, which is a class library, handles all the manipulation that is performed on the XML file that is used as the data store for the RequirementsDB application. This library, contains functions for authenticating the client, sending the client the requirement lists and other information depending on the functions that are called by the client. The activation mode for the File System class is singleton, thereby having only one instance of the class running on the server and clients would have to share this resource, thus getting access to the same data. Since this class library is going to be accessed by multiple clients simultaneously, it is imperative to have proper synchronization objects in place within the functions when the data structures are being read or written to in order to avoid deadlocks etc thus resulting in erroneous data.

Server Communication Module

 This module is responsible for setting up the communicating channel, which would enable the remote clients to connect to it. When a client calls, it creates a single instance of the remote object (File System) effectively making the object a singleton. This instance would be then made available to all other clients that connect to the server application. There will be only one instance of the object created for each project team i.e., one XML file. If a client sends a request for another file to be loaded, a separate thread will be spawned.

4. RequirementsDB Data Flow Diagram

The RequirementsDB application can be broken down into the following processes. The data flow diagram (shown in Figure 4) helps in describing the way the information is passed around the client application to the server application and finally displayed to the user viewing the user interface (In this case, the list view) on the client’s main window (Figure 6).

[image: image4.wmf]Client

Controller Process

Display

Process

Update

Requirement list

Modified

Requirement

Errors

S

u

c

c

e

s

f

u

l

l

A

u

t

h

e

n

t

i

c

a

t

i

o

n

Client Communication Process

Logon

Process

User/Paswd

Authentication

Result

Request to

Server

Response from

Server

Request server

for Data

Data from

Server

Server Communication Process

Server

Controller Process

Data from

Server

Class Library

Object

Request server

for Data

Function Call

Return Value

S

t

a

r

t

C

l

i

e

n

t

Start Server

TCP Channel

Client

Application

Server

Application

Figure 4: Data Flow Diagram of RequirementsDB Application

Logon Process

When the client application is started, the user is prompted to enter her /his username and password for authentication. These parameters are then passed to the client communication process that establishes a connection to the server. After the processing is done on the server, the client is then returned the authentication result. The client communication process then passes this information back to the logon process, which then loads the main user interface window.

Client Controller Process

After a successful logon, the user is now taken to the main user interface window controlled by the client controller process. This process is responsible for communicating with the client communication process and the display process. The client controller process, which is the main running thread, spawns additional threads, thus freeing the main user interface from any of the background processing that happens. This process formats the messages, which it sends to the communication process to be sent to the server. The background processing consists of receiving messages from the client controller process. These messages are nothing but the requirements that are being sent across the channel by the server. The client controller process then processes these messages and sends the appropriately formatted messages to the display process, which updates the list view in the UI window. All communication between these background threads is done through the use of send and receive message queues.

Client Communication Process

This process serves the purpose of creating a TCP channel with the server in order to communicate with the remote object of the class library being accessed. It receives requests from the Logon process for authentication of user. It sends either success or failure as it receives the same from the server across the channel. It also receives messages from the client controller process, which would usually request requirement information. The communication process would send the request to the server and pass the return value back to the client controller process.

Display Process
 This process behaves as the front-end to the RequirementsDB client application. The user interface consists of menu items, list view, and buttons that are provided for viewing, adding, modifying and deleting requirements. Any change made to the information is then sent to the client controller process, that in turn passes the data to the communication process for updating of the requirement at the server and sends back the updated requirement duly reflecting all the changes made.

Server Controller Process

This process is responsible for managing the remote object invocation. When the client requests for information from the class library object, it is done through the process that is set up by the server controller process. Since the server needs to be capable of handling multiple files which means many different project teams could be using the system concurrently, it would need to maintain a list of active projects and the clients that are associated with each project. This way, the server will only send messages to those clients belonging to that particular project.

Server Communication Process

This process is responsible for communicating with the clients that communicate with the server through the TCP channel that it initially sets up when the server application starts up. The communication channel is set up by using .Net Remoting functionality. This process will be responsible for handling the various clients that are trying to get access to the remote object store.

Class Library Processing
 This process contains all the functionality that the client needs access to. The object of this class library is instantiated when the first client connects with the server and the server controller process starts a new process for the project file (Xml Requirement List file). All clients that will subsequently access the server will use all the functionality of the same instantiated object. Also when a client has modified a particular requirement, it is responsible for sending this notification to the other clients that are logged on. It does this by passing the notification message to the server communication process through the server controller process.

5. User Interface

Interface Views

The Requirements Database application is a Microsoft Windows operating system based client utility built on the .Net framework using Visual C#.

Logon User Interface

On executing the client application, the logon screen is displayed as shown in Figure 5. The user will enter her/his username and password. If the server is not running or authentication fails, the user will be prompted with the appropriate error message, else the logon screen will disappear and the main client application display screen is shown.

[image: image5.jpg]Usemame test_user

==

Figure 5: RequirementsDB Logon screen

Main Application Display

The main display screenshot is shown in Figure 6. This screenshot was taken when the user authentication through the logon screen shown in figure 5 was successful. Once loaded, the task of this module is to display the requirements list in the list view. This could be done in one of two ways. The first way would be to get the entire list at one go. The second way would be to get one requirement at a time and display it. I chose to go with the second option as after doing a little performance analysis with prototype code. (Refer section Analysis 2) The reason being, that if the entire file were to be retrieved at a go, this would firstly cause the main display screen to freeze till the entire list was received. Secondly, since the server application was catering to more than one simultaneously logged on client, which would mean the other clients would have to wait in a queue till all the clients previous to it were serviced. The main user display uses queues to send and receive messages with the communication module and will receive one requirement at a time. As the message (single requirement) is received from the server, the main display module is alerted and the list view is populated with the requirement. This method is a more acceptable one, as it affords a more equitable sharing of the resource between multiple clients.

Buttons provided at the bottom of the list view enables the user to “Add”, “Edit”, and “Delete” requirements. The other buttons are enabled only when a particular requirement is selected.

When a user decides to make a change in the requirement that she / he is the responsible individual, the user will check out the requirement (explained in more detail in the diagram as shown in Figure 7), the user will click on the checkout button. The server is notified of this change and records it, the server then sends out a notification to all logged on clients of this requirement being checked out and is displayed on the client UI with an “X” mark in the row of the requirement that is currently checked out. If another client has modified a requirement, a notification is sent from the server to all other clients. Once the client communication module receives this notification, it alerts the main user interface module of the change, and the user interface is updated for that particular requirement. This can be shown by the “X” mark in the modified column. Many other options can be possible, for example, the row could be in a different color to make it stand out.

Through the above means, it was found unnecessary to provide a button for refreshing the entire list, as just as long as the client remains connected, it would receive notifications when they happen so the client will always have the most recent view of the XML data store.

[image: image6.jpg]Flo About

=10l
[ENESEGRT FAWCE TT\CHDOCS Projectit HedDB\RedDB\LogorNbmDebug Reauiements DBaml Load XML Fi
Number | Tile | Type | Modfied | Checked Out | | Date Created | Date Modiied
e S e sl A Jae Doe 252008 20772003
2 Comnond e sguners con..._8 Jahn Dos 262008 272003
3 R Moot e st A % Jae Do 52008 377200
1 Req3- <L Fe encyption B % JaneDos

320003 3472003

Add Edit Delete

Figure 6: RequirementsDB Main User Interface

Edit Requirement Dialog Window

The “Edit Requirement” window is displayed (Figure 7) when the “Edit” button in figure 6 is clicked on, the record that is selected is displayed in a separate dialog window. The user can then make the required changes and click on “Save / Check In” or click on “Cancel” without any modification being done. The user can also click on the check out button, to alert other people that a change is in the process of being made. Once the user is satisfied with the change, he /she can click on the check in button to submit the changes to the server. Now, according to the application requirements, only the responsible individual can make changes to a particular requirement. So this window will prevent the current user to make any changes if the user is not the RI for the particular requirement and will display a message saying the same.

[image: image7.jpg]Reguierent No

Requiement Tile
Tope

Desciption

Person Responsile
Created Date.
Modified Date:

[Feq3- <ML File enciyption
g

P s shallbe enciypted for secuity puiposes.
biah.biah

[Jane Do
37272008
37472008

e huk b | | Gl

Figure 7: RequirementsDB Edit Requirement Screen

Add New Requirement Dialog Window

The “Add New Requirement” dialog is displayed (See figure 6) when the “Add” button is clicked on in figure 4. Any client can add a new requirement, however the person who adds the requirement becomes the responsible individual for that requirement.

[image: image8.jpg]Requitement Title [N ey Requirement Title

Tope

Desciption

3

[Lorem psum Dolor st amet
fesciipion goes here.

Person Resporsble. [Tushad Mot
Created Date [572572003
Modiied Date [5725/2003

Add

ond the new requiement

=

~=lolx|

i

Figure 8: RequirementsDB Add New Requirement Display Screen

Interface Interactions

The following section will attempt to explore in more detail the interaction between the user interface described in the previous section with the activities capable of being performed using the interfaces.

Load the XML File

From the Main display user interface, the user has the option of loading a new XML file (for say another project) that she / he may be a member of. This causes the already existing list view to be cleared and the server is contacted with the new filename. The loading process is initiated. After which the application will display the individual requirements of the file row wise in the list view provided. At this point only the “Add” button is enabled. All other buttons are disabled. (See figure 6)

View List through scrollable List view

Once the list is displayed in the list view. The user can use the scrollbars provided to scroll through the list. (See figure 6)

Selecting a particular requirement through mouse click

The user can use the mouse to select a particular requirement, which is nothing but a row in the list view (See figure 6). If the user single mouse clicks the row, the row will be highlighted. At this point, the “Edit” and “Delete” buttons are enabled. If the user double-clicks on the row, it causes the “Edit Requirement” dialog window (Figure 7) to be displayed.

Adding a new Requirement

Once the application is up and running, the requirement list is being displayed in the list view, the “Add” button is enabled. At this point, the user can click on the button if she/he wishes to add a new requirement. This causes the “Add New Requirement” dialog window. This same dialog window as the one used for editing a requirement is reused here. The title of the dialog window is changed to reflect the action being performed. The user then can add the information into the blank fields provided and click “Add” when finished or click “Cancel” if she/he wishes to abort the action. The window is then closed; the user can then view the newly added record in the list. (See figure 8)

Editing an existing Requirement

If the user wishes to edit an existing requirement, he /she can do it by selecting the record and clicking on the “Edit” button or double clicking the row that displays the requirement. The “Edit Requirement” dialog window (Figure 7) is displayed. All the information belonging to that particular requirement is displayed in the appropriate text boxes provided. The user can first “Check Out” the requirement then make changes as per her/his desires and then either click on the “Save / Check In” button and commit the changes or click on the “Cancel” button to abort the action.

Deleting an existing Requirement

If the user wishes to delete an existing requirement, the user must select a particular requirement from the list by selecting it in the list view and clicking on the “Delete” button. (See figure 6) A confirmation dialog box will then prompt the user for acknowledgement. A second way of deleting a requirement is by double clicking the requirement in the list view, which would display the “Edit Requirement” dialog window (See figure 7). A “Delete” button is also provided along with the “Save” and “Cancel” buttons. The user can click on the “Delete” button and will be prompted again by a confirmation dialog window.

6. Activities

The various user and system activities that happen during the RequirementsDB application lifecycle have been split into the Client Activity and Server Activity diagrams.

Client Activities

The client activity diagram is as shown in figure 9.

[image: image9.wmf]Display Logon

Window UI

St

ate

User Input

Username/ Paswd

Connect to server

Success?

No

Yes

Display Main

Window UI

User Input

Selection

Click “Add”

Click “Edit”

Click “Delete”

Get Requirement

List on Startup

Enter & Validate

information

Success?

No

Yes

Compose

Message

Place in

Queue

Send

Message

Received Messages

and Notifications from

server put in Queue

Remove

from Queue

Edit & Validate

information

Yes

Success?

No

Compose

Message

Confirm?

Yes

Compose

Message

Compose

Message

To Server

From Server

Update Main

Window UI

Close

Application

Compose

Message

S

ta

te

TCP Channel

Figure 9: RequirementsDB Activities Diagram
The client activities that are performed are as follows:

· The client will initially have to logon to the system and be authenticated by the server. On success, it is then allowed to view the requirement list and work on the application.

· The user has the ability to selecting a particular XML file on the remote machine.

· Selecting a particular requirement through a left mouse click user action in the list view.

· Adding a new requirement by clicking on the “Add” button in the main display window. The user then enters information in the new window that is displayed. A message is sent to the server informing it of a particular requirement being added.

· Editing a particular requirement by first selecting the requirement from the list of requirements, and either left clicking the “Edit” button or double clicking on the particular row in the list view. This action causes the “Edit Requirement” window to open and the user is able to modify the contents of that particular requirement. All modifications are sent back to the server in the form of messages composed by the client application.

· Deleting a particular requirement by first selecting the requirement from the list of requirements, and through a left mouse click action on the “Delete” button. A confirmation window prompts the user. A message is sent to the server informing it of a particular requirement being deleted.

· All messages from the server are put in a received queue, and read one at a time and processed by the application main thread.

· Exiting the application by first sending a message to the server informing it of closure, closing all channel communication and performing clean up after which it shuts down.

Server Activities

The server activities (see Figure 10) that are performed are as follows:

[image: image10.wmf]Start

Server / Setup

Channel

St

ate

Incoming

Client Message

Intialize

Remote Object

Process

Message

Call Appropriate

Function

Add/ Edit/ Delete/ Get

Outgoing Server

Message /

Notification to

Client(s)

Wait for Client

Messages

Get Return

Value from

Function

User Input

Shutdown

Command

Call Function

to Save XML

File to Disk

Send

notification to

logged on

clients

St

ate

T

C

P

C

h

a

n

n

e

l

Figure 10: Server Activity Diagram

· The server starts up and sets up the communication channel and performs all the initialization tasks. The activation mode for the server object (XML File System and Handling) is singleton, as the server needs to maintain state information.

· When it receives a client message, it invokes the particular functions on the remote object to get the desired value back to the client.

· It continues to service the client requests as they come in.

· The server will maintain a list of all the active projects i.e., the number of open XML files.

· If the server is to be shut down, it will inform all clients of this event, so that they can too terminate gracefully from their respective applications.

7. Client Server Communication

To illustrate the communication mechanism between the client and server application through .Net Remoting functionality; figure 11 shows an example of the remote object invocation of a function that authenticates a user at logon.

When the user logs on, the client application communication module sets up the communication channel with the server. The client and server proxies are present to handle all the marshalling of data, transfer channel configuration under the covers and the implementation of which is hidden from the developer. The client simply invokes the function on the client proxy as though it were a local call.

[image: image11.wmf]Client

Client Proxy

Object on

Server

Class

Library:

MarshalByRefObject

Perform

Authenticate User

Locate

Server

UnMarshal

Request

Send

Request

Marshal

Request

Call AuthenticateUser

Function()

Perform

Auth Processing

Return

Result

Marshal

Response

Send

Result

Locate

Client

UnMarshal

Response

Return

Auth User Result

Figure 11: Client Server Communication Illustration
8. Events

The operation of the RequirementsDB application can be described in terms of the events that are spawned during the lifecycle of the application. The events shown are both application generated events and user generated events. Only higher-level events of both type are displayed in the diagram (Figure 12) and hence low level system events and other such deeply rooted events are left out intentionally so as to give a more generic overview. Time increases as you move lower in the event trace diagram.

[image: image12.wmf]User

Logon Module

Start

Application

Load Main UI

Main Client

UI Module

Requirement Modification

UI Module

Communication

Module

Enter Username

and Password

Auth

Result

Server

Application

Connect

to Server

Auth

Result

Read Queue

Send Mesg

Start Worker

Thread which reads

the receive Q

Stop

Application

Send Mesg

Close Conn

Mesg to Close

Recv Mesg

En Queue

Msg

Stop Worker Threads

and clean up. CLOSE

Start Worker

Thread which writes to

the Send Q

All UI Commands

are executed

in this fashion

(Add/Edit/Del)

Read Qs and

Update UI

Queue the Mesg

which will be read by thread

Build Mesg

Figure 12: RequirementsDB Events Trace Diagram

After the logon process, and the main UI module is loaded, the main thread creates worker threads that enable the client to process messages without keeping the UI from freezing up due to background processes. When the user interacts with the main UI, the main thread composes messages that are put in the send queue. The client then, makes a call to the remote object that is invoked on the server through a pass by reference object, which would allow the server to pass data back to the client. When a message is received from the server through the client communication module, it is deposited in the receive queue and the worker thread associated with this action reads the queue and updates the user interface with the data that is sent to it.

Analysis

This section describes the various factors that were taken into consideration when architecting the application along with the justifications.

A prototype client and server application was developed to observe the remoting functionality and the various timing factors were observed and analyzed. A HighResTimer class was included in both the applications to record the elapsed time between certain events.

The following analyses were done on Pentium II 350MHz machines with 128 MB RAM and a 100Mbits/sec switched Ethernet LAN. Each of the analysis was carried out a number of times on the RequirementsDB application, and the average time was taken to ensure an unbiased and almost accurate result. Moreover, the server and the client were run on different machines.

Analysis 1: .Net Remoting Functionality

This application is written for the windows platform. Since the Remoting functionality of the .Net platform is being used, passing complicated types would not be possible without having the common language runtime on both sides of the connection.

When using .Net Remoting functionality, one has to keep in mind that the client calls on remote objects and even though they look like local objects, there is a lot of overhead involved in marshalling data back and forth from the server. From known documentation, a remote call can be at least many fold slower than a local call in the common language runtime. The RequirementsDB application would be used by an average of four to five people at a time. The Lifetime of the object can be configured through a configuration file.

Analysis 2: XML File Load time

The prototype server application was developed and the Xml File load times for two files were recorded along with their memory usage and file sizes. A screenshot of the output on the server console application (Refer Appendix)

	File Size (Kb)
	Number of Requirements
	Memory Usage (Mb)
	Load Time (seconds)

	231
	604
	14.2
	0.73

	814
	2144
	20.5
	1.948

Figure 13: XML File Load Time test times
From the above table (Figure 13), we can see that if the server were to be placed on a machine with adequate memory and processing power, small and relatively large XML file containing requirements for projects would be loaded into memory without too much of a performance obstacle.

Analysis 3: Multiple Clients

The type of remote object activation is “singleton”, which was considered appropriate for this application, as it would allow multiple clients to get access to the same instance of the data store so as to enable coherency and data integrity. However to accomplish this, synchronization of the remote object will have to be performed. This will have an impact on the application in terms of speed. However, for this application in which the number of simultaneously logged in clients is not high, the impact will not be noticeable. Also, since the client is a multithreaded application, the user will still be able to work on the main user interface which the background worker threads send and receive messages to and from the server respectively.

The following scenario tested the worst case scenario for the RequirementsDB application in which the clients logged in at the same time and requested the entire list of requirements which the server sent to them one requirement at a time and not the whole file.

	Number of Clients
	Number of Requirements
	Time (seconds)

	1
	604
	16.47

	2
	604
	21.3 and 20.6

	3
	604
	31.9, 33.0, and 32.5

Figure 14: Average Throughput

From the above table (Figure 14), it is apparent that when the clients request the server for the entire list on startup, it would be a better idea for the server to send one requirement at a time and the client internally would keep populating its list view one at a time giving the user the impression that progress is being made. Also implementing ReaderWriterLock functionality for synchronizing the remote object would help in speeding up the read process.

9. Issues

This section describes some of the issues that the RequirementsDB application faces or could face.

Issue 1: XML file size

An XML file is read into memory and transforms its contents into data structures accessed by the client applications. However, as the size of the file increases, it would be imperative to consider the consequences in terms of processing degradation, amount of memory needed to handle large files.

Testing was performed by running the application with the task manager open and viewing the difference in memory and CPU usage when the server application loaded the file. (Refer Analysis 2 in the previous section)

Consider the size of each parameter within a requirement

· Requirement Number – integer field– 4 bytes

· Requirement Type – character field– 1 byte

· Requirement Title – character field – 500 bytes

· Requirement Description Text - character field – 4000 bytes

· Responsible Individual – character field – 50 bytes

· Date created (mm/dd/yyyy) – date field – 10 bytes

· Date modified (mm/dd/yyyy) – date field – 10 bytes

· Total = 4635 bytes maximum allowable per requirement

We can observe from the above total figure that the number of requirements needed to be stored in the file for there to be a significant impact on performance and memory will have to be a very high number (tens of thousands). This application will work successfully for small sized application requirement lists. Even though this issue is not a very critical one, it will always remain a factor to be considered whenever the design is changed or enhanced.

 Issue 2: Scalability

Since the remote object is a singleton and needs locking, as explained before, this would impede the application if there were a large number of clients wishing to gain access to the system. As the application is currently designed to use remoting, if at all the need requires for a faster application, the current client communication module could be changed and instead of using the remoting functionality, lower level socket programming could be used. Also suitable locking mechanisms would need to be in place that would allow simultaneous reads, which would surely lessen the wait period of the clients on the remote object. .Net’s ReaderWriterLock accomplishes this. It locks only when writing while allowing free reads.

Issue 3: Security

Security is an issue with this application under the scenario where the application is to be used by a large number of people. For example, if the requirements XML file is located on a shared directory on the server, it could cause a lot of trouble, if it were to be accidentally modified, moved or deleted.

Also since the channel that is currently being used is TCP and all the data is converted to binary, the application is safe as long as it is being used within a company protected by a firewall. Else, some level of encryption would need to be applied to the messages being sent across company firewalls. It is safe to assume that this application would be used for relatively low security level projects where the capturing of the requirements enroute to the clients is not a grave threat to the company.

Issue 4: Operating System crash

This issue is not of tremendous consequence but will enable the system to be more robust. In the case of an abnormal termination of the application, there could be significant loss of data.

Such a scenario could be avoided by the inclusion of a timer module in the server application, who’s task is to wait a certain period of time (configured programmatically or through the applications user interface), after which it calls an event that saves the contents to the file. It could be made even more robust if this process checks to see if any changes were made in that period of time and only then to save the changes back to the XML file, else the process’ timer will be reset and it will continue the next wait cycle.

Issue 5: XML data store Versus Relational database

The application has been designed taking into consideration the storage mechanism being used is an XML file and not an off the shelf relational database like MS Access, MS SQL Server or any other database available.

XML is a standard that is currently being adopted very rapidly and very widely. Information exchange over disparate systems is made simpler and easy via XML documents as the storage units. Another advantage is that once the XML transformation module is developed, it will require very low maintenance overhead as opposed to the continuous database maintenance that would have to be done with a relational database. It is also a more cost effective solution.

A downside to using XML as the data store is the size limitation, and the performance degradation for large files. After all relational databases offer greater flexibility and functionality though at a cost of significant administration overhead.

10. Future Enhancements

Availability of the system over the Internet

For this application to be available over the Internet so as to enable users that are spread across the country or the world to easily access the system through a web browser and don’t need to have the client utility with them every time. There will definitely be an impact on the current design of the system. Even thought the communication modules will have to be tweaked, a lot of the existing functionality will still be preserved.

Currently, the communication channel is set to TCP; this is a more reliable and faster means of communication as the data is sent across in binary format. The application will have to be modified to use HTTP as the channel for communication. If the “HTTPChannel” is used as the channel for communication, the default serialization mechanism is SOAP (Simple Object Access Protocol). In this method, messages that are passed between the client and the server will be XML messages that will be wrapped in SAOP envelopes. One must keep in mind that the type of protocol used definitely has an impact on the performance of the application.

One advantage of using this method and protocol include security and interoperability. HttpChannel hosted in Microsoft Internet Information Services (IIS) would enable the application to take advantage of the security functions that are built into IIS and ASP.NET making it a more secure and robust application. If IIS were not the hosting place of choice, then the application would need to provide its own security mechanism. Also, SOAP and XML offer a higher level of interoperability between disparate operating systems. However, going with this option, the drawback one has to factor in is that HttpChannel is not the highest performing option due to the use of XML serialization and the additional overhead of using HTTP protocol inside IIS.

Deployment is also something that needs to be factored into. Attention needs to be paid to the deployment of the application into different assemblies. It would be a good idea to ensure that the code on the server need not be shipped to the client. The effective use of “Interfaces” help in ensuring the above.

However, with such a system, most of the issues that apply to the current design when using .Net Remoting would apply to the new application.

Use HTTP channel and maybe hosting on IIS.

Mapping between A and B Level Specifications

The application currently only stores the specification type. This poses as an issue for mapping the customer’s requirement specifications with that of the developer’s. An efficient mapping mechanism would enhance the functionality of the system making it extremely beneficial to the user.

This could be achieved by first including an association field as an additional parameter in the requirement. This field will contain the requirement number and requirement type of the requirement it is associated with. Typically the developer’s specification is associated with the customer’s requirement specification type.

The internal data structure within the program would also need to be modified to handle this additional association parameter. The display modules would be changed and would display the association information while displaying the other parameters.

Encryption of the Messages being sent across

Security is a big concern in today’s corporate environment and companies are doing the best they can to secure their data and resources. For this application, currently the messages are being sent across the TCP channel and no encryption is being used. If this application were to be used within the corporate firewall, it would not be a big concern. However, scenarios may arise where developers could be all the over the country or world and need to get access to the system. One way of solving this problem is to encrypt the messages being sent across the channel, the client or server at the other end would have the decrypting algorithm to decrypt and read the messages.

Admin and other access roles for better

Currently the system has not been designed for providing users level of access. It would be a good idea in the future to add user roles and ids for better control and management of the system. For example, there could be roles for developers, stakeholders, project managers and administrators, each having a set of rules and access rights. This would be made possible through the addition of an admin module that could add, modify and delete users, associate them with projects and so on.

Search Mechanism

To further enhance the application’s functionality and usability, it would be advantageous to include a search mechanism.

The search would be a keyword search. The application would search through all the elements in the requirement list that are stored in the application data structure and return the matching results. This could be an additional scrollable list. The same Main display module can be reused for displaying the search results by hiding the main requirements list and showing only the subset result set.

Miscellaneous Enhancements

In addition to the existing parameters stored in the XML file and displayed in the application display form, the following can also be considered future additions for enhancing the information content of the data store. These are:

· Requirement Status: This field could contain a status flag as to whether the requirement is in design phase, development phase or has been completed. A list of probable values could be decided upon and used.

· File Attachment Reference link: Lots of times software requirements come with word document attachments for clarification and better understanding. For example, if the new requirement being added requires the association of a word document to it, the application would allow the user to browse for the particular file and store the location of that file in the data store.

Summary

The RequirementsDB distributed application allows the user to View, Add, Modify, and Delete requirements that are stored in an XML file. IT consists of the client application and server application. The server application allows simultaneous access to the requirement data store so as to enable users located at different places to access the same project requirement list.

This operational concept document has scrutinized the application at the architectural level through various modeling diagrams and has addressed many issues that could arise and their solutions. This document will be able to guide developers working on the different modules in the client and server applications to get a better understanding of the system as a whole and how the various models interact with each other.

The RequirementsDB distributed application is an easy to use and cost effective solution as an effective tool to have in the project management arsenal for small to medium size projects.

 Appendix

Prototype

For the purpose of generating screen shots (See figures 5, 6, 7 and 8) and getting familiar with the .Net Remoting functionality, I implemented a skeleton client application and server application.

The display modules were also constructed, and the button click events on the Main display form were coded.

Server Console Application

[image: image13.jpg]Server has started up.

Waiting for client to logon
> Client has connected to server and has passed the username and password....

- psud

username = tushad password=

>Tine taken to load the XML file with 684 requirements to memory....
o lapsed microseconds: 725547

Figure 15: The Console Application interface

Figure 15 shows a screenshot of the server application running. The time values display the output generated by the class HighResTimer for measuring performance.

Server.cs

static void Main(string[] args)

{

System.Console.WriteLine("\n Server has started up");

System.Console.WriteLine("===============================\n");

TcpServerChannel chan = new TcpServerChannel(8085);

ChannelServices.RegisterChannel(chan);

RemotingConfiguration.RegisterWellKnownServiceType(

typeof(authenticate.File_Handler),

"AuthObj",

WellKnownObjectMode.Singleton

);

System.Console.WriteLine("\n Hit <enter> to exit...\n\n");

System.Console.ReadLine();

}
file_handler.cs

The functions in the File_Handler class that is Marshalled by Reference Object.

Function: GetRequirements()

public string[] GetRequirements(int htable_key)

{

timer2.Start();

string[] ReqArray = new string[7];

foreach (DictionaryEntry d in File_Handler.theHandler.theHashTable)

{

if (d.Key.ToString() == htable_key.ToString())

{

Req_Store rsReq = (Req_Store)d.Value;

ReqArray[0] = rsReq.requirement_no.ToString();

ReqArray[1] = rsReq.requirement_title;

ReqArray[2] = rsReq.requirement_type;

ReqArray[3] = rsReq.requirement_description;

ReqArray[4] = rsReq.responsible_individual;

ReqArray[5] = rsReq.create_date.ToShortDateString();

ReqArray[6] = rsReq.modified_date.ToShortDateString();

}

}

timer2.Stop();

Console.WriteLine("\n\n elapsed microseconds: " + timer2.ElapsedMicroseconds.ToString()+ "\n");

return ReqArray;

}
The above function is called when the client requests for a particular requirement.

Function: LoadXmlFile()

public bool LoadXmlFile(string filename)

{

try

{

//timer2 = new HRTimer.HiResTimer();

timer2.Start();

XmlDocument xdoc = new XmlDocument();

xdoc.Load(filename);

xmlFileName = filename.ToString();

XmlNodeList nodelist = xdoc.SelectNodes("requirements_list/requirements");

string[] xmlElements = new String[7];

for(int j=0;j<nodelist.Count;j++)

{

XmlNode xnd = nodelist[j];

xmlElements[0] = xnd.SelectSingleNode("requirement_no").InnerText;

xmlElements[1] = xnd.SelectSingleNode("req_type").InnerText;

xmlElements[2] = xnd.SelectSingleNode("req_title").InnerText;

xmlElements[3] = xnd.SelectSingleNode("req_created_date").InnerText;

xmlElements[4] = xnd.SelectSingleNode("req_modified_date").InnerText;

xmlElements[5] = xnd.SelectSingleNode("req_modified_by").InnerText;

xmlElements[6] = xnd.SelectSingleNode("req_desc").InnerText;

PopulateRequirements(xmlElements);

}

timer2.Stop();

Console.WriteLine("\n==>Time taken to load the XML file with {0} requirements to memory....\n", reqCount);

Console.WriteLine("elapsed microseconds: " + timer2.ElapsedMicroseconds.ToString());

return true;

}

catch (System.IO.FileNotFoundException e)

{

string msg = e.ToString();

//MessageBox.Show("The default file could not be located. Please Click on the Load XML File button to load another XML file.");

return false;

}

catch (System.Xml.XmlException e)

{

string msg = e.Message.ToString();

//MessageBox.Show("The XML file being loaded is incorrect or has got corrupted.");

return false;

}

}
This function is called when the server starts up and the file is loaded into memory.

Client Application

sing System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using System.Threading;

using authenticate;

namespace Communication

{

class clientComm

{

public clientComm(){}

private static clientComm cl_ref = null;

public static clientComm theClientComm

{

get

{

if(cl_ref==null)

 cl_ref = new clientComm();

return cl_ref;}

}

public File_Handler proxy;

//Channel Setup

public void SetUpChannel()

{

TcpClientChannel chan = new TcpClientChannel();

ChannelServices.RegisterChannel(chan);

}

//Object Activation

public void ActivateRemoteObject()

{

proxy = (authenticate.File_Handler)Activator.GetObject(

typeof(authenticate.File_Handler),

"tcp://localhost:8085/AuthObj");// same machine

//"tcp://192.168.0.100:8085/AuthObj");

//"tcp://24.58.16.201:8085/AuthObj");// server a remote machine having cable internet connection

if(proxy == null)

Console.WriteLine("can't activate object");

}

public string GetRespIndividual(string username, string password)

{

string resp_individual = proxy.verifyUser(username, password);

return resp_individual;

}

}

The above file is the code file for the client communication module.

XML File

The following XML file was used as input to the prototype application. (The file has been shortened for documenting purpose). Filename= RequirementsDB.xml

[image: image14.jpg]Filename - RequirementsDB.xml

<2l version="1.0" encoding="utf-8" 7>
<requirements_ist>
<requitements>
<requirement_no>1</requirement no>
<req_type>As/req_type>
<req_ttle>Req Title 1<req_ttle>
<req_created_date>2/2/2003</req_created_date>
<req_modified_date>2/2/2003<req_modified_date>
<req_modified_by>John Doe</req_modified_by>
<req_desc>Req Description </req_desc>
<requirements>
<requirements>
<requirement_no>2</requirement_no>
<req_type>B<ireq_type>
<req_itle>Req Title 2</req_tile>
<req_oreated_date>22/2003</req_created_date>
<req_modified_date>2/2/2003<req_modified_date>
<req_modified_by>Jane Doe<ireq_modified_by>
<req_desc>Requirement Description </req_desc>
<lrequirements>

<Irequirements_list>

_1117913324.vsd
State�

Event_name�

Client
Controller Process�

Display
Process�

Update
Requirement list�

Modified
Requirement�

Errors�

Succesfull
 Authentication�

User/Paswd�

Client Communication Process�

Logon
Process�

Authentication
Result�

Request to
Server�

Response from
Server�

Request server
for Data�

Data from
Server�

Server Communication Process�

Server
Controller Process�

Data from
Server�

Class Library Object�

Request server
for Data�

Start Server�

Function Call�

Return Value�

Start
Client�

�

�

TCP Channel�

Client Application�

Server Application�

_1117990912.vsd
State�

�

�

�

�

Start
Server / Setup Channel�

�

�

Incoming Client Message�

�

Intialize Remote Object�

�

Process Message�

Call Appropriate Function
Add/ Edit/ Delete/ Get�

Outgoing Server Message / Notification to Client(s)�

Wait for Client Messages�

Call Function to Save XML File to Disk�

Get Return Value from Function�

User Input�

�

�

Shutdown Command �

Send notification to logged on clients�

�

�

�

�

�

�

�

�

�

�

�

TCP Channel�

_1118000355.vsd
Class name�

State�

�

�

�

�

�

�

Perform
Authenticate User�

Locate
Server�

Client�

Client Proxy�

Object on Server�

Class
Library: MarshalByRefObject�

UnMarshal
Request�

Send
Request�

Marshal
Request�

Call AuthenticateUser
Function()�

Perform
Auth Processing�

Return
Result�

Marshal
Response�

Send
Result�

Locate
Client�

UnMarshal
Response�

Return
Auth User Result�

_1117997863.vsd
Class name�

�

�

�

�

Main Client
UI Module�

Requirement Modification UI Module�

�

�

�

�

Communication
Module�

Enter Username
and Password�

Auth
Result�

�

Stop
Application�

Send Mesg�

User�

Logon Module�

�

Close Conn�

Mesg to Close�

Recv Mesg�

Start
Application�

En Queue
Msg�

Stop Worker Threads
and clean up. CLOSE�

Start Worker
Thread which writes to
the Send Q�

All UI Commands
are executed
in this fashion
(Add/Edit/Del)�

Read Qs and
Update UI�

Queue the Mesg
which will be read by thread�

Build Mesg�

Load Main UI�

�

Server
Application�

Connect
to Server�

Auth
Result�

Read Queue�

Send Mesg�

�

Start Worker
Thread which reads
the receive Q�

_1117989890.vsd
Class name�

�

(Class-name)
attribute-value-1
attribute-value-2�

�

�

�

�

�

�

State�

�

�

�

Display Logon Window UI�

User Input
Username/ Paswd�

Success?�

Connect to server�

No�

Yes�

Display Main Window UI�

Click �Add� �

User Input
Selection�

Click �Edit��

Compose Message�

Place in Queue �

Click �Delete� �

Get Requirement List on Startup�

Enter & Validate information �

�

No�

Success?�

�

�

Yes�

Send Message�

Received Messages and Notifications from server put in Queue�

Remove from Queue �

From Server�

�

�

Edit & Validate information �

Compose Message�

Confirm?�

Yes�

Compose Message�

Yes�

Success?�

�

�

No�

Compose Message�

�

Close Application�

To Server�

�

Update Main Window UI�

Compose Message�

�

�

TCP Channel�

_1117830009.vsd
Class name�

Process name�

Graphical User Interface or Command Line �

Console Application�

Client Processing�

Graphical User Interface�

Commands
Add/Edit/Del�

Login parameters
(User/Paswd)�

Display
Requirements�

Error
Messages�

Graphical User Interface�

TCP Communication Channel�

File System�

Error
Messages�

Proxy�

Remote Object�

Server Processing�

File Handle�

File Name�

Command Line�

Graphical User Interface�

_1117907687.vsd
Class name�

Server Communication Module�

Main Server
Module�

File System
Module�

_1117801835.vsd
Class name�

Client Communication Module�

Main Client UI
Module�

Requirement Modification
UI Module�

Logon UI
Module�

