
SOFTWARE SYSTEM TAXONOMY

Jim Fawcett
CSE681 – Software Modeling and Analysis
Spring 2010

Agenda

 Taxonomy – An organization or catalogue

 Software Systems Taxonomy – parts of a
catalogue of models:

 System Structure

 Software Studio Examples

 CSE681 Project #5 Examples

 MS Thesis Research Examples

The gap between theory and practice

in theory

is nowhere near as big as

the gap between theory and practice

in practice

Structuring Paradigms

 Computational
 Example - Scientific computing
 Focus on answers and views
 May be distributed by function but probably not by

machine

 Event-Driven
 Examples - User Interfaces, Servers, Security
 Focus on state and state changes
 User Interfaces and (semi) Real Time systems

 Service Oriented
 Examples - Communication, Business services
 Focus on reliability and performance
 Usually network or web based

Software System Structures

 Client-Server

 Three-Tier

 N-Tier

 Layered

 Peer-to-Peer

 Collaborative

 Service Oriented

 Agent Based

Client-Server

 Client initiates, server responds
 Servers are passive

 Only provide replies to specific request types

 Server provides a service
 Web server, file server, network storage

 Examples:
 Web sites – Amazon, ecs.syr.edu

 Web services – google maps

 http://www.ecs.syr.edu/faculty/fawcett/handouts/
CSE681/Presentations/IntroductionToWeb.ppt

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Presentations/IntroductionToWeb.ppt

Three-Tier (really four)

 Presentation
 What user sees, may have many distinct views
 Initial rendering determined solely by server
 Client (Javascript and Ajax, for example) can provide

subsequent local as well as server activity

 (Often Implicit) Control
 Responds to user inputs
 Routes events to handler actions

 Application (object-based)
 Implements a model of what the user views and

manipulates

 Data (usually table-based)
 Manages creation, retrieval, update, delete (CRUD)

Presentation and Control

 Desktop

 Windows forms, WPF, Java Swing, gtk+

 Web Application

 Asp, Asp.net, Asp.net MVC, Silverlight with WPF,
Java with Servlets, …

 Mobil Application

 Thin versions of the Web Application technologies

 Ajax

 Round-trip data transmission mechanism,
orthogonal to the above.

WinForms, WPF, Asp.Net

 Make control implicit, and encourage tight
binding

 Two kinds of binding
 Bind view tightly to event handling – one to one

correspondence between events and handlers.
 Different views may need the same event handling, but it

is hard to share event handlers across views.

 Bind directly to data in event handlers.
 WPF has a lot of infrastructure to support binding

controls to data.

 But we may have many views, application
modes, and data sources.
 Tight binding makes it hard to avoid repeating code.

Separation of Concerns

 Except for the simplest of applications it’s not
a good idea to bind presentation, control, and
data together.

 There often are many views, more than one
application mode, many sources of data.

 If we bind these all together we get spaghetti

 Very hard to test, hard to maintain, hard to
document.

Model-View-Controller

 MVC Separates concerns:

 Directly supports multiple views and multiple
application scenarios

 Users request actions, not resources
 Give me this view into model, not this web page

MVC – More Realistic

 Views and Models usually have some
substructure, e.g.:

View – View Model

 A view is what gets rendered

 A view model is an abstraction that:

 Defines resources that many be used in several places.

 Defines styles that may be used in several places

 Defines an object model for the application to
manipulate

 In some implementations of MVC:

 Controller updates the model

 View subscribes for update events from the model.

Application vs. Data Models

 Application model

 Defines classes for all the entities a user knows and
cares about, e.g., orders, customers, products, etc.

 Data model

 Defines wrapper classes for tables and stored
procedures

 Manages connections

 Object to Relational Mapping

 Relationships between application objects and data
objects.

Applications of MVC

 Asp.Net MVC (Web application, .Net environment)

 Released as part of a service pack for .Net 3.5

 Is an official part of .Net 4.0 framework with project wizard available in
Visual Studio 2010.

 Microsoft Composite UI Application Block (Desktop, .Net)

 http://richnewman.wordpress.com/2008/02/23/model-view-controller-
explained-introduction-to-cabscsf-part-22/

 http://msdn.microsoft.com/en-us/library/aa480450.aspx

 JavaEE6 (Web applications, java environment)

 http://java.sun.com/javaee/

 http://programmaremobile.blogspot.com/2009/01/mvc-design-pattern-
in-java-ee-eng-ver.html

 http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93co
ntroller

http://richnewman.wordpress.com/2008/02/23/model-view-controller-explained-introduction-to-cabscsf-part-22/
http://msdn.microsoft.com/en-us/library/aa480450.aspx
http://java.sun.com/javaee/
http://programmaremobile.blogspot.com/2009/01/mvc-design-pattern-in-java-ee-eng-ver.html
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

N-Tier Structure

 So, the three tier MVC has morphed into a
five tier V-VM-C-AM-DM

 View – what gets rendered

 View Model – an abstraction of the view

 Controller – routes View events to handlers in the
Application Model

 Application Model – classes that model the
“business” logic

 Data Model – models data storage tables

 Database, XML file, custom data structures

Layered Structure

 Provides a structure based on:

 System Services – things the user doesn’t think
about

 Communication, storage, security, file caching, …

 User Services – things the user manipulates as
part of the use of the system

 Input, Display, Check-in/Check-out, …

 Ancillary – Things that are not part of the system
mission but are necessary

 Logging, extension hooks, test hooks, …

Peer-to-Peer

 Distribution of parts that cooperate on a mission
by sending each other commands and messages.
 Parts may or may not be identical, but probably have

identical layered system services

 Usually part of a collaboration system

 May have a “distinguished” peer

 Development attempts to provide one set of core
services and build peer personalization on top of that

 Example:
 Software Matrix, Gosh M.S. Thesis,

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/softwarematrix.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/softwarematrix.htm

Collaboration System

 System that focuses on sharing of processes and
products among peers with a common set of
goals.
 Primary focus is organizing and maintaining some

complex, usually evolving, state:
 Software development baseline
 Set of work plans and schedules
 Documentation and model of obligations
 Communication of events

 Example:
 Collab – CSE784, Fall 2007,

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

Service Oriented

 System composed of

 Set of autonomous services

 Software glue that binds the services together

 Focus on

 Reliability, availability, compos ability

 Example:

 VRTS – CSE784 Project, Fall 2008,
http://www.ecs.syr.edu/faculty/fawcett/handouts/
webpages/Vrts.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.htm

Agent-Based

 System uses Software Agents
 Semi-autonomous, mobile, task oriented software

entities
 May be scheduled
 Provide scriptable user specific services

 Collect information from a large set of data
 Perform analyses on changing baseline and report
 Conduct specific tests
 Make narrowly specified modifications to baseline

 Example:
 CSE681 Project #5, summer 2009,

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE
681/Projects/Pr5Su09.doc

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Enterprise Computing combines
Structures

 Enterprise computing binds together a business
with its partners, suppliers, and customers.

 May integrate many functions:

 Inventory control, order processing, product
disclosure, product design collaboration.

 Likely to be peer-to-peer with “distinguished”
peer that coordinates activities.

 Partners work together through a collaboration
subsystem.

 Uses web-based service oriented architecture.

Project #5
 Peer-to-peer?

 May initiate analyses from client
 May schedule analyses and notify users of results

 Collaborative?
 QA, Management, Developers, and Architects all care about the

analyses and results.
 How do we overtly support collaboration?

 Service Oriented?
 Communication and Notification are probably service-based

 Layered?
 If we extend by sending libraries to remote machines to be run

from tool holster, we may want to have the holster provide
execution services – a sandbox – to enhance security

 Agent-based?
 We probably want to schedule tests, tailored to specific users,

e.g. QA, team lead, architect.

Software Studio Examples

 All of these were designed, built, and delivered
by CSE784 classes.
 VRTS – Virtual Repository Testbed Servers, Fall 2008,

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/Vrts.htm

 Cserv – Collaboration Server, Fall 2007
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

 RSA – Remote Software Assistant, Fall 2006,
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/RSA/rsa2006.html

 RTBS – Repository Testbed System, Fall 2005,
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/RepoTB.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.htm
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/RSA/rsa2006.html
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/RepoTB.htm

CSE681 Project #5 Examples

 ABSA – Agent Based Software Assistant, Su09
 Agents running on Repository, Testbed, and Tools

 VDS – Virtual Display System, F08
 Large display system driving Repository, Testbed,

Collaboration servers

 ABQATS – Agent Based Quality Analysis and Test
System, Su08
 Agents supporting Test System

 Cserv – Collaboration Server system, F07
 Collaboration server with repository and testbed in context.

 ADSCS – Agent based Distributed Software
Collaboration System, Su07
 Agent based support for collaboration

Master’s Thesis Research
Examples

 The following are all based on Software
Matrix structure – Autonomous cells often
used with mediator

 Software Matrix – Gosh, 2004

 Self Healing Systems – Anirudha, 2005

 Cross Platform Development – Appadurai, 2007

 Model-Driven Development – Patel, 2007

 http://www.ecs.syr.edu/faculty/fawcett/hand
outs/webpages/research.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm

Software Matrix Concept

The End

