CRC Builder Prototype

Architectural Concept
Project #1 – Fall 2001
Jim Fawcett, Instructor

CSE681 – Software Modeling & Analysis

Version 2.1
24 May 2003
Table of Contents

· Goals of the Prototype ……………………………………………………

3
· CRCBuilder Modules
 ……………………………………………………….

4
· CRCBuilder Activities ……………………………………………………….

5
· CRCBuilder Classes
 ……………………………………………………….

6
· CRCBuilder Events
 ……………………………………………………….

7
· Note to Students
 ……………………………………………………….

9
Goals of the Prototype:

The CRC
 prototype, CRCBuilder, is used to quickly capture the name, responsibilities, and collaborators of each component of a new system. The intent of this tool is to record this small amount of architectural level information very quickly and easily. Since it requires very little investment of effort to use, we will have no reluctance to throw away any components or component information that aren’t as useful as we might like. Thus the tool encourages exploration of architectural alternatives.

A screen shot of the running prototype will help us understand how it is to be used. We can enter a component title, and immediately get a blank EditBox for recording the component’s responsibilities. Collaborators, e.g., the other components with which it cooperates, are shown in the TreeView on the left.

[image: image6.emf]User

Executive MainForm EditForm

Editor

DataStore

start

select comp

display data

edit CRC

delete

CRC

FileHandler

validate

save

CRC data

request file

request

CRC

create

new CRC

request

creation

enter

data

locate file

and open

delegate

request

load

data

display data

show form

request

edit

modify

CRC data

request

delete

validate

modify

CRC data

stop

request

save

save

and

close

closing

At any time we can view or edit any of these fields simply by clicking on a title in the ListBox or Component in the TreeView, and editing information in the EditBox on the lower right.

CRCBuilder Modules:
CRCBuilder contains the following modules:

[image: image2.emf]Editor Module

Data Store Module

User Interface Module

Executive Module

This is a WinForm-based application. Its modules are:
1. Executive Module

This module is responsible for coordinating the activities of the other modules. At startup it creates the main form, reads from a CRC data file, and initializes the main form’s displays. It also is responsible for saving the state of the CRC data at shutdown.

2. User Interface Module

This UI module defines the main user interface and editing forms. It provides event handlers the respond to user actions by selecting a CRC for viewing or editing.

3. Editor Module

Functions from this module are called by the User Interface event handlers to add, delete, and modify the in-memory representation of CRC cards, using the services of the Data Store Module.

4. Data Store Module

Each CRC card is represented in memory using an XML Document Object Model (DOM) and in a database file as an XML string. It is the responsibility of this module to load the DOM at startup, from a file specified by the executive and to convert the DOM to an XML string for saving at shutdown. It provides an interface for the Editor module to use to store new CRCs and edit existing CRCs within the DOM.

CRCBuilder Activities:

CRCBuilder starts by creating the main user interface form and reading a CRC database file, which uses an XML string format for saving CRC information. It then translates the XML string into DOM elements used to hold CRC data in memory. Finally, CRCBuilder displays a current CRC. It then waits for a user initiated event, e.g., a mouse button click to:

1. select a CRC
User left clicks on a title in the ListBox or component in the TreeView.
2. delete a CRC
User right clicks on a CRC title, selects delete in a pop-up context menu, and responds to a confirmation dialog.
3. edit a CRC’s data
User simply edits the text in the CRC Data EditBox. As each change is made, it is immediately recorded by the Editor module, using the services of Data Store. The user may also drag a component from one location in the TreeView to some new location.
4. create a new CRC
User right clicks on a component in the TreeView and enters information into the resulting editing form. The new CRC becomes a child of that component.
5. save and exit
User clicks on the kill button.
The save and exit action results in extracting the in-memory CRC data from the DOM, translating it into an XML document string, and saving it in the project’s database file.

[image: image3.emf]State

Create

Dialog

Read XML

database file

Translate

into

CRCProc

Format

Display Current

CRC

Create CRC Delete CRC Edit CRC Select CRC

Save CRC

Set

Translate to

XML Format

Save in File

Confirm Dialog

St

ate

St

ate

Activity Diagram - Proto1

User Action

CRCBuilder Structure:
The diagram below shows how the CRCBuilder classes and modules are related.

[image: image4.emf]Editor Module

Data Store Module

User Interface Module

Executive Module

Executive

MainForm

EditingForm

Editor

DataStore

FileHandler

CRCBuilder Classes:

The classes MainForm and EditingForm are derived form WinForm’s Form class. They provide a user the ability to view and edit a CRC. They handle user events, e.g., mouse clicks and text entry, but delegate all of the computation to the Editor and DataStore classes.

The Editor class validates requests, based on what is currently stored in DataStore, and then creates or edits CRC title, responsibilities text, and links between parent and child CRCs. It stores the results in the XML DOM, using the services of the DataStore class.
DataStore is the only class that directly manipulates the XML DOM, isolating the need to know those details from the other classes.

The File Handler class is responsible for locating, opening, and closing database files requested by the executive.

CRCBuilder Events:
[image: image1.png]| CRC Prototype
5 Execulive
User Interface
£ Edtor
DataStare
DataStare

“The Executive coordiantes the activities of the other components.
1t is responsiale for

1. Reading from a data file at startup.

2. Creating the server component bjects,

3. Initializing the state of each of the server components,

4. Saving the Data Store state at shutdown.

The CRCBuilder events are shown in the diagram below, focusing on the main events that are initiated by user actions.

The user has five main activities: starting the CRCBuilder program, selecting CRCs, editing their text, entering a new CRC, and shutting down the program. Once CRCBuilder is running, all user actions are events in the controls, e.g., selecting a title from the ListBox or TreeView, editing text in the EditForm, or clicking on the kill button.

All of these events are handled with windows message handlers (surprise!) in the MainForm and EditForm classes. These handler functions are very simple as they delegate the appropriate actions to the Edit and DataStore classes which in turn uses the services of FileHandler.

Important Issues:
Because of the simplicity of the operational concept and the small number of CRCs that would be generated, even for a fairly large project, there are no issues concerned with scale, performance, or feasibility for the CRCBuilder program.
[Note to students:

Here is where you discuss issues of scale, performance, and feasibility.

Scale is concerned with handling potentially large sets of data. The database in project #1, for example, could be asked to hold several thousand requirements. Can we expect to handle all those requirements in memory, or do we need to devise some paging scheme to bring in only a subset at any given time?

Performance is concerned with the time required to carry out certain activities, like startup, and searching for some specific item. The requirements database in Project #1 can grow to contain, perhaps, thousands of requirements. How do we design the system so that the user does not have to wait a long time for initialization and can find a specific requirement in a reasonable amount of time. Sometimes you can estimate initialization and search times. However, often we must resort to building small prototypes to analyze the important performances.

Feasibility is often concerned with the complexity of implementation. For example, if we decided that the requirements data had to be paged out of the database file, the resulting design and implementation would be fairly complicated. So the development might not be feasible for a given schedule or budget.

End of note]

Summary:
The CRCBuilder Prototype is a simple program, consisting of 4 relatively independent modules. They support the creation and editing of electronic versions of CRC cards, useful for experimenting and documenting the structure of some complex system.

The CRC set is given an in-memory representation by the Data Store module. Cards are made persistent through the services of the Data Store and File Handler modules. All data entry and editing is supported by the WinForm-based MainForm and EditForm modules, using the services of the Editor module.
Since CRC card sets will always be relatively small, and all activities are managed by the user through a user-event driven interface, there are no size or performance issues. The implementation should be straight forward with no difficult issues to deal with. The existing prototype code demonstrates roughly how a finished user interface should behave. The CRC representation, provided by Data Store implementation has not been explored as part of the prototype. However, no difficulties are anticipated in implementing CRC card persistence, especially since the .Net implementations of the XML DOM and XML handlers can be used to handle the formation and parsing of XML data.
Appendix - Note to Students:
Here are some observations I’ve made based on what I saw when I’ve graded reports from earlier classes.
Diagrams and discussion should be presented in decreasing order of abstraction. So:

1. Context diagram shows how your processing uses information from its environment and what information it returns to its environment. Text should consist of a paragraph or two focusing on top level processing at a very abstract level.

2. Module diagram shows how your program is packaged into modules and how they intercommunicate. It must follow the syntax of a structure chart with callers above and callees below. This is a very abstract diagram. Text should give about one paragraph per module to discuss module’s responsibilities and very high level activities.

3. Activity diagram shows how your program’s activities depend on the external world and on each other. Usually you provide one activity diagram per program, although you may use a more detailed activity diagram for a complex module. Text should enumerate each of the main program activities and provide a little discussion in a way that is consistent with the diagram.

4. Class diagram shows how your modules are populated with classes and how the classes relate to each other, via inheritance, composition, and using relationships. Usually there is one class diagram per program. Text should provide at least one paragraph for each significant class. List its responsibilities and discuss its public interface and important relationships with other classes.

5. Event trace diagram shows how your program reacts to cetain important events. Usually there is one event trace per program, but it is sometimes the case that several event traces are used to discuss different modes of program operation. Text should enumerate each of the major events, often giving one paragraph for each event. Discuss the flow of events in a way that is consistent with, and refers to, the diagram.

6. Structure chart shows low level function calling relationships, e.g., what functions call what other functions. Often use one structure chart per module. The structure chart is only needed where there is significant layering of function calls. Text should walk through the diagram, discussing each of the important functions and telling what they do, and their importance for the program.

7. Data structure diagram shows how your data is laid out and organized. Use as many as needed to show all important data structures. If you need a data structure diagram then you will need to provide at least one paragraph of text describing what the data structure is and how the program uses it.

8. State diagram shows how your program evolves through various computational states. Often used to show how grammar processing works. Discuss each state and the events that cause a transition to another state. Discuss any significant computational activities in each state.

You don’t need to use all these diagrams. Just use your judgment about which ones would best convey your architecture and top-level design.

Usually an architectural concept document will have at least:

1. A context diagram or a module diagram.

2. An activity diagram or event trace diagram – often both.

3. A class diagram

4. Structure charts only if there is significant layering of function calls.

You are encouraged to provide screenshots, showing how your interface works. That can be a very powerful aid to the reader in understanding your system.

Specific problems I detected while grading:

1. Missing high level introduction:

a. What is a CRC card, and how is it used?

b. What are the goals of the program?

2. Have neither event-trace nor activity diagrams.

a. Almost always need one or the other, often both.

b. No coherent discussion of activities. This needs to be a plain, simple enumeration of activities (simple doesn’t mean there is no discussion).

c. Syntax errors in activity diagrams – about half the diagrams had guaranteed deadlocks.

3. Structure charts with far too little discussion.

4. Problems with general discussion:
a. No lead-in before a diagram.

b. Discussion too vague, not enough specific detail.

c. Disconnects between diagram and text. Examples:

i. Text with module diagram talks about activities instead of responsibilities.

ii. Text with class diagram talks about function calls instead of class responsibilities and relationships

d. Over heated, puffed up text, using gratuitous adjectives and adverbs. Don’t try to convince the reader that MFC is wonderful or XML is the greatest thing since cottage cheese. Just state the facts. There’s nothing wrong with a little humor, but leave the salesmanship at home.

Note that my example is simple, fairly brief, but clearly explains the high and intermediate level operation of the program. The very low level stuff belongs in a design report or documented in the code itself, or both.
� EMBED Visio.Drawing.6 ���

� CRC cards are 5 by 7 inch index cards that contain the name of a Component, enumerate its Responsibilities, and list its Collaborators. This project builds a computerized CRC generator.

PAGE
1

[image: image5.emf]User

Executive MainForm EditForm

Editor

DataStore

start

select comp

display data

edit CRC

delete

CRC

FileHandler

validate

save

CRC data

request file

request

CRC

create

new CRC

request

creation

enter

data

locate file

and open

delegate

request

load

data

display data

show form

request

edit

modify

CRC data

request

delete

validate

modify

CRC data

stop

request

save

save

and

close

closing

_1115273508.vsd

_1115274992.vsd

_1115278236.vsd

_1066011898.vsd

