CSE681 – Software Modeling & Analysis

Organizing Principle for Project #1,2 – Use Two Pass Processing
Pass 1:

- find all types: class, interface, struct, delegate, enum

 - type is key, value is name, definition file

 - type dependencies: find (composed,) aggregated, inherited, used all from
 class declarations

Pass 2:

- find all file dependencies

 - if declared as instance or argument anywhere in file then depend on type's
 definition file

Organizing Principle for Project #1,2
 – Use Tokenizer, SemiExpression, Parser

- Throw away all comments

- tokenize file text

- collect analyzable sequences of tokens

 - find class as: class token {
 - find aggregation as Type in sequence ending with ; in class
 scope

 - find inheritance as class token : token {

Tasks:

- Collect references to all specified files

 - read path, pattern, recursion switch

 - get names of files on path

- evaluate dependencies based on type info in each file
 - Pass #1

 - find all type definitions, store in type definition table
 - key type, value file where defined, e.g., definition source file

 - for each type analyze inherited, aggregated, used

 - Pass #2

 - Code can’t use an instance of a type unless:

 - it declares an instance

 - is passed as a parameter to one of its functions

 - So, find type declaration instances and parameters

 - Then look up type’s source file in type definition table
 - Conclusion: this package depends on the package of the type definition

- Display dependencies

 - File to list of files

 - Type to list of types with dependency type

