Organizing Principles for Project #5, Spring 2010

We’ve spoken before about organizing principles, but it may not have been clear, at that time, just what we meant by this phrase. Now, we are in a position to make that concrete.

1. Every class that handles messages derives from AWrapper or delegates to a class that does.
a. ToolUI

b. ToolLib

c. Executive

d. Comm

This includes the ToolUI and ToolLib for Repository, Testbed, ChangeLogger, RequirementsDb, and BugTracker.

2. Every software component treats messages as instances of the Message class, except for Comm.
a. Comm must convert messages into strings to send and then convert back to a Message instance on receipt.

b. This Comm must implement a Message factory.

c. If there are no derived Message types, that is easy. It’s just a constructor that accepts an XML string.

d. Because most classes treat messages as objects of the Message class, passing them around is efficient, e.g., just a reference is passed – no copying of characters.

3. Every test configuration runs on its own thread.
a. This means that small tests won’t get queued behind very large test configurations and have to wait a long time for execution.

4. Everything worth saving goes into the repository as a full versioned member.

a. Production code

b. Documentation

c. Test code

d. Test configurations

e. Test results

f. Third party dlls and exes, used by the project.

This implies, for example, that there is a concrete association between versioned test results and the specific versioned code and versioned tests that generated the results.

5. Distinguish between items and components.
a. An item is the manifest for a single module, and usually refers to a single source code file, but may refer to many other items.

b. Each item has one, and only one Responsible Individual (RI).

c. A component is an item and all the items it refers to directly and indirectly.

6. All items are self describing.
The consequences are:

a. Browsing becomes very effective since the user interface can support, for any item, requests for information. Because each item contains that info, it is relatively easy to maintain, as apposed to a specification or design document that tends to get out of date because it is too much effort to update.

b. Builds require no human interaction. A particular build may include thousands of modules. It would be impractical to ask a human operator to manage this.

c. Builds can easily be reconfigured. An item may hold a parameter specifying that it is the root of a dll. Everything it depends on is either statically linked (if the item has no dll specifier) or loaded dynamically. When an architect wants to rearrange the build packaging, all that requires is to change item build parameters.

Note that, to fully realize this principle we link requirements and design information about an item from that item’s manifest, as well as source code.

7. Check-ins and Check-outs are always single items.
a. An item is the unit of configuration management.
b. Check-outs are always for modification and only the RI is allowed to check-out or in.

8. Component extractions from the Repository are managed by the receiver.
a. Receiver asks for a component and gets its manifest from the Repository.

b. Receiver scans the manifest and for each reference, looks in its file cache to see if it already has it. If not, then and only then, does it request that reference (file or manifest) from the Repository.

c. Both the Repository and receiver treat two versions of a given file as separate files.

d. This process is repeated recursively until the entire component resides on the receiver.

9. Check-ins can be either open or closed.
a. Check-ins always result in the version number being incremented.

b. An open checked-in item can be revised in any way without re-versioning, e.g., changes are not check-ins, so we have file uploads that are not check-ins, but only to open items.

c. No closed item can refer to an open item.

10. Every versioned item, once closed, is logically immutable.
The consequences are:

a. Checked in tests, and test results can be replaced without re-versioning if checked in open. This allows us to get test and production code working and still have all important items held by the repository.

b. The same is true for production code while we get items completed, e.g., all the references may not be ready when we want to check an item in, so we check it in open.

What does logically immutable mean? That all the parts of an item cannot change, but the manifest itself can change, e.g., by adding new keywords, adding commentary text, build parameters, and by keeping reference counts.
11. New versions never link up.
A higher level item may link to a new version, only by creating a new version for the higher level component as well, but that is never done automatically. The consequences of this principle are:

a. The author of any item knows that it will not be broken by a new item being added to the repository, even if the author’s item depends on the older version of the newly checked in item.

b. This author can experiment with the new lower level item whenever it is convenient to do so.

c. New item versions are orphans in the repository (without parents) until some parent item reversions itself to adopt the new item.

i. This could be a problem locating and browsing new items unless we do something.

ii. One good solution is to create one or more “super” items that are parents to all the orphans in the repository. That is, any item that would otherwise have no parent becomes the child of a “super” item.

These are powerful principles. Their statements:

1. Help designer’s understand how the system is intended to work.

2. Serve as a reference against which to judge proposed changes.
3. Help to preserve the integrity of the original concept.

