	Guy Pascarella

Requirements Database OCD
	27 May 2003

Revision 1.0

Requirements Database

Operational Concept Document
Guy Pascarella

Syracuse University

CSE 681 – Software Modeling and Analysis

Revision 1.0

27 May 2003

Table of Contents
31 Introduction

31.1 Executive Summary

31.2 Objective

31.3 Requirements

42 Architecture

42.1 High Level Architecture

42.1.1 User Interface

52.1.2 Controller

52.1.3 Database

62.2 Use Cases

72.3 Modular Architecture

82.3.1 Requirements Database

82.3.2 Main Display Form

82.3.3 Controller

82.3.4 Validate Requirement

82.3.5 Requirement Edit / Create Form

92.3.6 Requirement View Form

92.3.7 XML Database

92.4 Activities

102.5 Summary

103 Detailed Design

103.1 Classes

123.2 Events

133.3 Summary

134 Design Issues

15Appendix A Example XML Format

1 Introduction
1.1 Executive Summary
This Operational Concept Document (OCD) is used to describe the project as described in the following objective. This document describes the system in such a way that a developer could implement it with as little developer decisions as possible. This is accomplished through the presentation of three differing levels (in ascending level of complexity, descending levels of detail) of architecture, the context, modular, and class architectures. These architectures are enhanced by activity and event trace diagrams describing the way each architecture’s components talk to each other. Finally, design issues are presented illustrating concerns that the developer using this document may consider in implementation.
1.2 Objective

Before development of any system commences customer requirements are gathered. These requirements are further bolstered by developer requirements. A way to capture these requirements, assign accountability and provide a graphical user interface. A way to persist and modify this information would be desirable, required in fact. The Requirements Database application will focus on providing a simple, effective means for describing, and disclosing on demand, the captured customer and developer requirements for a given project.
1.3 Requirements

The following requirements were dictated by the customer:
· Each requirement will consist of at least the following information

· Number

· Type

· Title

· Date of creation

· Date of last modification

· Responsible individual

· Description

· A user interface consisting of at least the three following user interfaces

· A list (possibly hundreds) of requirements, showing each requirement on a single line of the display, omitting the text description
· A display of a single requirement selection from the previous requirement, showing information presented there along with the text description of the requirement
· A form used to create a new requirement or edit an existing requirement
· Allow the user to specify at startup the name of a database file to use

· Support the capture, editing, display, and deletion of a requirement

· Save the displayed information in a file, using XML representation. This representation shall be read at startup, if it exists, and saved at shutdown
· Provide a button or menu item to bring up a new or edit form
· Also support access to the form via a click or double click on a specific requirement line from the list view
· A possible future way of mapping between customer and developer specifications
2 Architecture
2.1 High Level Architecture

The system will be broken into three main “layers” consisting of a presentation, processing, and persistent layers. This architecture is also known as the Model-View-Controller (MVC) or (in a web-based context) three tier architectures. The following context diagram describes the interaction between each layer.

[image: image1]
Context Diagram for the Requirements Database
2.1.1 User Interface
Following the user requirements the User Interface will present a way to display requirements and an interactive process for creating or editing requirements. The user interface will contain a main Windows™ form displaying all requirements contained within the database as a list. This list will be sorted by requirement number and will omit the text descriptions of all requirements. The main form will also contain a menu and toolbar used to perform actions regarding the manipulation of the database and requirements. These actions will include, but are not limited to creating, opening, closing, and saving a database; creating, deleting, undeleting, viewing, and editing requirements. Deleted requirements will be denoted by a red strikeout through the list item representing said requirement. A blank entry shall be appended to the main list. Double-clicking on any list item will display this requirement, including the text description, in the requirement view form. A new requirement will be created, indicated through the display of a “blank” requirement edit form, by double-clicking on the blank list item.

The requirement view form will contain all information about a single requirement as directed by the Controller through interaction with the main display. This form will contain a “Cancel” button to dismiss the form. This form will also contain a button to change itself from a requirement view form to a requirement edit form for editing of the requirement currently being viewed. The requirement edit form shall be exactly the same format as the requirement view form except the fields will be editable and a “Save” button will also be present for saving the changes made. The user may cancel any changes made and dismiss the form by clicking the “Cancel” button.
The requirement create form will be the same as the requirement edit form. The non-editable requirement attributes will be filled in with the remaining attributes blank.
2.1.2 Controller

The Controller performs all logic for the Requirements Database application. It provides a linking of the User Interface to the Database. It will perform data validation and will direct the actual addition, updating and retrieval of requirement records from the Database. It will also direct the User Interface what to display and the current form to display. Note in the previous context diagram the controller will not direct the database to delete a requirement record; this is because once a record is added it cannot be totally destroyed only marked as deleted.

2.1.3 Database

The Database layer is responsible for the persistence of requirements in a retrievable manner and providing an interface to the Controller for manipulation of these requirement records. This component will store the physical database in an eXtensible Markup Language (XML) format. An example format of this encoding is demonstrated in Appendix A. This will require the use of either third-party libraries or operating system services. The Database will allow either the specification of an XML file to load or a new file to create. It will also allow the specification of a filename to save the physical database as. Once a physical database is either created or loaded the Database will allow the retrieval of a single record or all records. The actual implementation may provide more functionality than this.
2.2 Use Cases

When describing the High Level Architecture it is good to describe how the user will interact with the system to perform certain functions. Two use cases will be presented. The first describing how the user would create a new database and add a single record. The second will illustrate a user opening a previously created database, modifying a record and deleting another.
A New Database

Upon starting the application the user will be presented with a dialog asking whether to load the last used database, open another user-specified database or to create a new database. The user selects the “create new database” operation. A new database is created in memory and the main display user interface is displayed with a single blank item in the main display list. The user double-clicks on this blank entry and is presented with the requirement create form. The requirement number [1], date created and date modified [current date] fields are already filled in. Deciding to test the system the user clicks the “Cancel” button. The requirement create form is dismissed and the main display is unchanged. The user clicks the “Create Requirement” button on the toolbar and is again presented with the requirement create form. Again, the requirement number [1], date created and date modified [current date] fields are already filled in. This time the user fills in the rest of the data fields and clicks the “Save” button. The form is dismissed and the main display list now contains the newly created requirement as a list item and blank list item beneath it. The user clicks the “X” button on the title bar of the window indicating they want to close the application. The application asks them if they would like to save the current database. The user selects “Yes” and selects a physical file to save the data to. The application then exits.
A Previously Created Database
Upon starting the application the user will be presented with a dialog asking whether to load the last used database, open another user-specified database or to create a new database. The user selects the “load last database” operation. The system tries to load the last database that was saved but it has been moved, deleted, or renamed in some manner. The application responds with an error and asks presents the user with the same three options again. This time the user selects the “open database” operation. The application presents the user with a file open dialog with which the user selects a physical file representing a requirements database. The Controller directs the Database to load said physical file. The Controller then queries the database and populates the User Interface with the requirements loaded into the database from the physical file. The User Interface’s main list display now contains all previously saved requirements and a blank line. The user double-clicks on the first requirement. This brings up the requirement view form. Deciding that they don’t like the wording of the requirement description, the user clicks the “Edit” button. The requirement edit form is populated with the requirement the user was just viewing. They change the description text and click the “Save” button. The requirements date modification and description text fields are updated, the requirement edit form is dismissed and the main list display is shown with the requirement’s updated date modification. The user then selects the second requirement by single-clicking on it. The user clicks the “Delete Requirement” button from the toolbar. A red strikeout appears through the list item representing the second requirement record. The user clicks on the “Save Database” button on the toolbar. The original physical file is updated with the changes made. The user then exits the application. Because the database in-file and in-memory are comparably identical the application does not ask the user if they wish to save the database.
2.3 Modular Architecture

Modular decomposition of the three layers (User Interface, Processing, and Database) yields the following module diagram. Each module will be explained in detail following the diagram.

[image: image2]
Module Diagram of the Requirements Database
2.3.1 Requirements Database

This is the executive of the system. Its main function is to create the Main Display Form and Controller modules. It then attributes the Controller to the Main Display Form and transfers control to the display.
2.3.2 Main Display Form

The purpose of this form is to be the main access of user input and system feedback. It presents the main list of requirements and signals the controller when a user requests any action. This is a “dumb” module in that it performs no system logic; it only informs the Controller of a user requested action and provides user entered data to the Controller.

2.3.3 Controller

It is the Controllers job to react to user requests. These requests may take the form of requirement requests or database requests. The requirement requests may be to add, delete or modify a requirement whereas the database requests can be to create, load or save a database file. The Controller relies on the Validate Requirement module to validate any data entered from user input. It also relies upon Requirement View Form and Requirement Edit / Create Form modules for viewing and manipulation of requirement records, respectively. Finally the Controller depends on the XML Database module for retrieval and storage of persisted requirement records.
2.3.4 Validate Requirement

This module validates the data fields of a Requirement object. This consists of making sure that the number is unique, the modification date is greater than or equal to the creation date. Also, if the dates are in text form that they are a valid form. The type field must either be “customer” or “developer”, case insensitive. Finally, the Validate Requirement module will check that every other field contains a text value, except the text description, which is optional.
2.3.5 Requirement Edit / Create Form

This form module is the user interface utilized in the creation or modification of a requirement record. If invoked to create a requirement record it will only fill in non-editable fields, which are consisted of number and creation and modification dates. If it is invoked to edit a requirement it will reflect a new modification date with the rest of the form showing the requirement’s data fields.
2.3.6 Requirement View Form

The Requirement View Form module constitutes the final user interface module. It is used for viewing a selected requirement in a non-editable manner. All data fields of a Requirement object are displayed in non-modifiable graphical components. The module contains a button which represents a request to edit the currently viewed Requirement object. The only additional graphical component on this form is a “Cancel” button used to dismiss the form.

2.3.7 XML Database

The final module of the Requirements Database system is the XML Database module. This module is depended upon by the Controller and provides access to an in-memory database of Requirement objects. This module supplies a simple application programming interface (API) that the Controller module will use to access the data contained. The client of this API has the ability to specify physical files to load a database from or save a database to. They will also have the ability to add, modify and retrieve the Requirement objects held within the database.
2.4 Activities

The following diagram illustrates the activities for the Requirements Database system.

[image: image3.png]‘ [

Activity Diagram for the Requirements Database

This diagram is describing the high level activity of the Requirements Database system. The system starts by “creating” the main display and controller. Then the application is “run”, this entails showing the display and waiting for a user action. Depending upon the user action requested the system may display another form, the controller may direct the database to perform some operation, or the system may try to exit. If the user requested an exit it will determine if the database is synchronized with the persistent version, if it is not then it will be saved and the system exits.

2.5 Summary

The High Level Architecture of the Requirements Database system is composed of three layers: presentation, processing and persistence. Each layer performs a certain function. The system uses the presentation layer to interact with the user. The processing layer is used to perform all business logic, including data validation for the system. And the persistence layer provides a database service to organize the Requirement objects, persist and retrieve values from a physical file.
Decomposing these layers into modules yields seven distinct elements: one executive, three contained within the User Interface layer, two contained within the Processing layer and one module representing the Persistence layer.
3 Detailed Design

3.1 Classes

Further decomposition of the modules presented in the High Level Architecture generates a finer grained class architecture. Every effort has been taken to follow best design practices and current design patterns. The class diagram of the Requirements Database system is presented below.

[image: image4.wmf]1..*

RequirementEditForm

System.Windows.Forms.Form

RequirementViewForm

-components:System.ComponentModel.Container

+RequirementViewForm

+Dispose:void

-InitializeComponent:void

RequirementCreateForm

System.Windows.Forms.Form

MainDisplay

-_controller:Controller

-components:System.ComponentModel.Container

+MainDisplay

+Dispose:void

-InitializeComponent:void

interface

IXMLDatabase

XMLDatabase

 FileName:string

Requirement

-reqType

 Creation:DateTime

 Modification:DateTime

 Type:reqType

 Title:string

 Number:int

 Responsibility:string

 Description:string

RequirementsDatabase

-mainDisplay:MainDisplay

-controller:Controller

+RequirementsDatabase

+Main:int

+Run:int

RequirementValidator

-_database:IXMLDatabase

+RequirementValidator

Controller

-_controller:Controller

-instance:Controller*

-_validator:RequirementValidator

-_database:IXMLDatabase

-_viewer:RequirementViewForm

#operation1:void

+getInstance:Controller*

Class Diagram for the Requirements Database System

A brief description and the roles and responsibilities of each class are explored below.

RequirementsDatabase is the executive. It creates the MainDisplay and Controller classes, links them and starts the application by displaying the display created.

MainDisplay is the main display form of the application. This is the main user interface that the user interacts with. It displays the main list of requirements within the database and provides a user interface for the methods present in the Controller, to which it delegates all control.

Controller is the decision maker of the system. It handles all control and logic, delegating input and output to the respective support subsystems. The classes relating to the user interface delegate user decisions (i.e. save an updated requirement, create a new requirement) to the Controller. This class also directs the database to add or modify records and what file to load and save to.
RequirementViewForm is a simple form class that displays a requirement along with all the fields that are not visible on the main list display.
RequirementCreateForm is a simple form class that uses the same layout as the RequirementViewForm (that is why this class inherits from it). However, instead of just viewing the fields, the fields may be edited and are blank except the non user-modifiable fields (number, creation and modification dates).

RequirementEditForm is another simple form class that uses the same layout as the RequirementViewForm (that is why this class inherits from it). However, instead of just viewing the fields, the fields may be edited except for the non user-modifiable fields (number, creation and modification dates).
IXMLDatabase is the interface (a.k.a. base protocol) that the Controller uses to communicate with a database implementation. This interface abstracts the XMLDatabase implementation class to a set of operations.

XMLDatabase is the implementation of the IXMLDatabase interface. This class is responsible for holding Requirement objects and implementing the interface that the Controller uses to access it. This class is also responsible for loading a set of Requirement objects from a physical file and saving a set of Requirement objects to a physical file.
RequirementValidator is the class that is used to validate a Requirement object. In other words it verifies the consistency of a Requirement.

Requirement can be thought of as a data structure. It is merely a data holder for all the information associated with a requirement concept.

3.2 Events

The event trace (a.k.a. sequence) diagrams that follow illustrate more detailed and class specific activity sequences.
[image: image5.wmf]IXMLDatabase

RequirementCreateForm

User

MainDisplay

Controller

1: Click_Create_Requirement

1.1.4: updateDisplay

1.1.3: insertRequirement

1.1.2: getRequirement

1.1.1: display

1.1: createRequirement

1.1.1.1: confirm

Event Trace Diagram Describing Requirement Creation

The previous diagram illustrated the steps the system would take when a user intended to create a new requirement. For brevity, the user interactions (i.e. enter text in …, click …) with RequirementCreateForm are not illustrated. When a user started the sequence of creating a new requirement they started a chain reaction beginning with the MainDisplay informing the Controller of the user’s intention. The Controller, in turn displayed the RequirementCreateForm, which informed the Controller that the user indicated they would like to save the requirement. The Controller queried the form for the information needed to construct a Requirement object and inserted this into the XMLDatabase through the IXMLDatabase protocol. The Controller finally had to inform the MainDisplay that there was an update to the database that would affect its main display list.

The next diagram shows the sequence that would take place if the user intended to modify a Requirement; however they decided to cancel the action.
[image: image6.wmf]RequirementEditForm

User

Controller

MainDisplay

2: Click_Edit_Requirement

1: Select_Requirement

2.1.1: display

2.1.1.1: cancel

2.1: editRequirement

Event Trace Diagram Describing Requirement Modification
The user begins by selecting a Requirement from the main display list then clicks the “Edit Requirement” button. The MainDisplay informs the Controller that the user wants to edit a specific Requirement. The Controller displays the RequirementEditForm and populates the fields within it with the selected Requirement. The user changes their mind and clicks the “Cancel” button.

There are many other event trace diagrams, more than can be adequately explored here. The diagrams presented give two of the most common sequences that may occur.

3.3 Summary

Class decomposition of the high level modular architecture results in the Class Diagram presented. These classes are a more specific description of the overall system. These classes are further explained and enhanced by the event diagrams. These explain the steps that take place when a user initiates an action.
4 Design Issues

There are many design issues that are left either entirely or at least partly up to the developer. This OCD described the user interfaces but it is up to the developer to actually implement them and the layout of the graphical components. Also, things mentioned here, for example the red strikeout of deleted requirements, may prove too difficult to implement in the timeframe the developer is given.

Another issue is the XML parser backend of the XMLDatabase class. It was intentionally left unspecified. There is obviously a trade-off of speed, memory and ease of implementation that the developer needs to address, possible parser include the Document Object Model (DOM), Simple API for XML (SAX), or the Microsoft XMLReader (similar to SAX).
System performance is mentioned as a design issue because no matter the design it is the implementation that determines this issue. It is mentioned here as something for the developer to think about. Consider the loading and saving of thousands of requirements. A DOM backend would result in a notoriously large memory allocation that may be more memory than the system has available. If this is so then the virtual memory swap file is hit resulting in a huge performance decrease. Another possible performance bottleneck is the updating of displays. Will the Controller tell the MainDisplay to simply update one record at a time or will it require the display to retrieve all records again? These issues may be non-issues if they are defined by this OCD, but they are not. It was the writers intent to allow the developer as much freedom as possible given the limited timeframe it is envisioned the developer will be under.
Security is also an issue not addressed by this OCD. It may be as simple as basing access on operating system access. In simpler terms, if a user can log into the machine and access the application then they inherently have access to the database. However, if the developer were so inclined, they could implement a role based security layer and encrypt the database file and/or include some form of cyclic redundancy check (CRC) to discourage a user from directly editing the physical file.

Finally, an example XML format for the physical in-file layout of the database is given in Appendix A. However, there is no Schema or DTD given to constrain the developer. In this way they may choose to enhance the format or rearrange the way things are laid out (i.e. making an element an attribute or vice-versa).

Appendix A Example XML Format
The following is an example XML format for the physical file. It is “open” enough to allow a developer to enhance or modify. The developer will also need to decide on an exact date encoding for the Creation and Modification elements. Here they are represented as MM/DD/YYYY. The MapsTo element is not described anywhere else within this OCD. It is included here to satisfy the future requirement of mapping two requirements (normally client to/from developer) together.
	<RequirementsDatabase version=”1.0”>

<Requirement number=”1”>

<Title>Requirement 1</Title>

<Type>Client</Type>

<Creation>05/21/2003</Creation>

<Modification>05/21/2003</Creation>

<Responsibility>Joe Client</Responsibility>

<Description>

This is the first requirement of the client...

</Description>

<MapsTo>

<RequirementReference>2</RequirementReference>

</MapsTo>

</Requirement>

<Requirement number=”2”>

...

</Requirement>

</RequirementsDatabase>

User Interface

Controller

Database

Display Requirement(s)

Request Requirement(s)

Load Database File

Create Requirement

Edit Requirement

Save Database File

Delete Requirement

Add Requirement

Operating System Services

Modify Requirement

For graphical display of forms

For XML file manipulation

Requirements Database

Main Display Form

Requirement View Form

Requirement Edit / Create Form

Controller

Validate Requirement

XML Database

� Either Customer of Developer

PAGE
2

