Notes for Project #5
Jim Fawcett, CSE681 – Software Modeling and Analysis, Nov 2006
Steps to create and document an Architecture:

1. discuss uses

a. actors – may be people or other software components

i. RSA – devs, mgrs, QA, customers

ii. Repo – clients, testbed, analysis tools

iii. Testbed – clients, Repo, analysis tools

iv. Executives – Comm, ToolUIs, ToolLibs, Clients

v. Tools – Users, other tools (shared data)

1. a major part of the value of RSA lies in its intelligent integration of tools, e.g., make each tool stronger due to its interaction with other tools.

b. their needs and goals, as they interact with the system

i. manage code and docs, learn system, analyze code and doc quality, analyze status

c. impact satisfying those needs has on design

i. discover organizing principles (see below)

d. other features that may be useful and effective for users without making the system much more complex

e. UI mockup Screenshots help understand user interaction with system

2. Define partitions

a. Context (context diagram)

b. Several layers of modules (package diagram)

c. Responsibilities

d. Executives, Comm, ModelBuilder, Repository, Testbed, SharedData, ReqDb, BugTrkDb, ChngLogr, Clients!
i. Note many-to-many relationships, e.g., each concurrent client has an Executive, may be many “servers”, each with their own executive.

e. Other tools:
i. BuildTool, PackagingTool

ii. Browser (source code, docs, test data)

iii. HTMLDocEditor

iv. Authentication/Encryption

v. Collaboration server (manages work-packages, schedules, assignments, on-line meetings, reviews, status)

vi. Administration
vii. Notification
viii. Other collaboration tools (blogs, notice board, action-items, shared calendar)
ix. StatusReporter (modules defined, tests run by module, tests passed, defects reported, size, complexity, code stanards, how long open, …)
x. QualTestTool (synchronize view of requirements with test executions)
xi. TrialUpdateTool – create new “test version” that links to all most recent versions of dependencies.

3. Organizing principles

a. RSA: Fine-grained message-passing

i. Every major component derives from AWrapper or uses a message handler derived from AWrapper, e.g., Execs, Comm, ToolUIs, ToolLibs

b. RSA: All Documents are HTML.

c. Repository

i. Configure at the module level – each module is an item
ii. Index by dependency graph – use manifests

iii. Each item has an RI – only RI can checkout/in (no branching and merging)

iv. Use open/closed check-ins to avoid explosion of versions

v. Support browsing on client machines by downloading new manifests (client sends date of last update). Send files to client on browse access if not in client’s cache.

vi. Consider message-passing format for internal components, e.g., Checkin/out, Extraction, Browsing, File management each treated like AWrapper derived tools. Now it’s easy to integrate pieces and share activities with client-side, e.g., browsing.

d. Testbed

i. Testharness runs test configurations, each on its own thread

ii. Current baseline is a very frequently run configuration, e.g., at every check-in

iii. Use child AppDomains to keep working set size to a reasonable level

iv. Supply default test vectors (TVG) and default loggers

v. Save versioned test data in Repository with configuration so each test run can be retrieved and results correlated with specific code versions.

vi. Do builds on Repository, not Testbed to share load. Perhaps build on Check-in. So Testbed extracts dlls. Implies Repository will version assemblies as well as source code. Consistent with the need to hold third party libraries, like compiler frameworks.
4. Activities (activity diagram)

a. Entire system

b. Executives, Comm, Repository, Testbed, ModelBuilder(?)
5. Critical Issues
a. Executives – routing messages to many concurrent clients logging in and out of the system

b. Repository – off load information-rich browsing to clients, want to flip through hundreds of reusable modules, need to get a good candidate set (think of google search redesigned for repo), file locking (shadow copies vs concurrent file access mgmt)

c. Testbed – file locking!, what to do when tests fail, how to package info in a usable way, support for qualification test (automate a mountain of unreadable documentation, months of labor – Software Studio project has more than 200 requirements)
d. Design of interaction of client/Repository/Testbed will make or break system.

e. Comm – binary files, chunking, store and forward, speed of access with web services

f. Performance Analyses:

i. Test load – how many tests per unit time, average run time per test

ii. Packaging a release – file transfer time, build time

iii. Browsing – time to scan, find file, send to client

6. Partitioning of OCD

a. Executive summary

b. Sections – Introduction, contents, summary

i. RSA, Repo, Testbed, Clients, Execs and Comm, Tools

c. Appendices – prototyping code with Intro and summary

