
Enterprise Architecture
Jim Fawcett

Software Modeling

Copyright © 1999-2017



References

• Beautiful Architecture, O’Reilly, 2009

• Will become required reading for this course

• Interesting examples:

• Massive multiplayer online games

• Facebook data management

• Surfing business data like surfing web pages using REST

• Beyond Software Architecture, Luke Hohmann, 

Addison-Wesley, 2003

• Places software architecture in the context of a 

business process (concept, plan, marketing, 

development, deployment, extension, security)



Need for Architecture

• Driven by:

• System complexity

• Performance requirements

• Need for flexibility

• To accommodate changing business objectives

• To replace aging technologies

• To cooperate with other applications

• Security

• Visibility and mutability based on authorization

• May need audits to prove compliance with regulations



Needs Driven by Size

• Longevity

• Enterprise system are expensive to build and 

deploy.

• We want them to last a long time to get 

significant return on investment.

• Stability:

• We want the core system to remain stable as 

development proceeds and later as 

maintenance adds new features.



First Questions (BA)

• The first questions an architect asks are not about 

functionality:

• Who are the stakeholders?

• On what platform will the system be built?

• How many concurrent users?

• Load model

• Latency

• How secure does the system need to be?

• Intranet or Internet?

• How sensitive is the information?

• How scalable must the system be?

• Orders of magnitude?



Goals of an Architecture (BA)

• Build systems that:

• Satisfy project goals

• Are:

• Friendly and responsive to the user

• Free of critical errors

• Maintainable

• Easy to install

• Reliable

• Communicate in standard ways



Architecture Quality Factors

• Usability

• Free of critical errors

• Metaphors

• Performance

• Security

• Safe

• Traceable

• Scalability

• Add more functions

• Add more users

• Add more data

• Maintainability

• Changeable

• Stable



Usability
Software Collaboration Federation (SCF)

• Users don’t wait for anything

• All tasks are asynchronous

• Simple models

• Everything is immutable

• Only control is check-in

• Concurrency models are simple and hidden from user

• All work is task driven:

• Check-in products

• Test code products

• Analyze results



SCF Security

• Use platform-based authentication

• Asp.Net like authentication and roles

• Use secure communication

• WSHttp encrypts transmissions

• Products contain encrypted hash to prevent 

tampering

• Message logs support traceability if needed



SCF Scalability

• Test harness (prime load—test execution)

• Concurrent test suites use available cores.

• File caching avoids unnecessary network traffic.

• Tests are independent so very little is required to support load-

balancing of multiple test harness servers.

• Repository (prime load—builds)

• Check-ins are independent so each can run on own thread, using 

available cores for building.

• File caching avoids unnecessary network traffic.

• Fine-grained availability is not important, so can host on multiple 

servers, synchronized at night.



SCF Maintainability

• Test harness:

• Functions are configuration, testing, reporting, 

notification, and communication.

• Test development is a client activity.

• Notification can be supported by test harness but implemented 

by tests, e.g., tests use T.H. notification facilities to report to 

client.

• These are all cohesive, easily encapsulated, easy to 

change without breaking other parts.

• Only configuration and reporting are likely to change.

• Functions are conceptually simple, and so, likely to be 

stable and free of critical errors.



SCF Maintainability

• Repository:

• Functions are check-in, versioning, metadata management, 

building, publishing, and communication.

• Check-in and versioning will use different policies for project, 

company, and developer repositories.

• Should make these rule based. How?

• These are all cohesive, easily encapsulated, and 

independent, so easy to change without breaking other parts.

• Check-in and versioning are conceptually the most 

complicated parts of SCF and so will need a lot of attention.



SCF Maintainability

• Client:

• Functions are check-in, building tests and test suites, reviewing 

results and logs, processing notifications, and communication.

• Users will want to configure client UI to support their own work 

activities.

• Could make part of the UI a web portal–like construct that will allow 

users to paste gadgets into portal regions, e.g., team test history for 

month, work calendar.

• Creating and using queries into test data need to be flexible, language 

driven, and invocable by name and scheduled.

• Clients will be central to running SCF, so must have core 

functionality running early.




