

1

Software Development
In the Cloud
Cloud management and ALM

First published in Dr. Dobb's Journal, February 2009: http://www.ddj.com/development-tools/212900736

The latest software development methodologies such as Agile require a more
collaborative and dynamic environment for teams to work. Short iterations and
continuous integration mean results and feedback are shared continuously, system
configurations change often, and working over time-zones is common. To achieve
this flexibility, more adaptable computing resources are needed. Nick and Darryl
provide an example use case and tools you can use in your environment, bringing
together the necessary ingredients for software development in virtual private
clouds, or even public clouds like Amazon EC2.

How does cloud computing change software development?
Similar to how virtualization began to take hold in the engineering lab, cloud computing is taking
root with the more experimental crowd in software development. The reason for this is obvious:
development teams are quick to jump on to any leading edge technology that solves their challenges.

New methodologies require more flexibility
These new challenges have come to the forefront because software development methodologies have
evolved to require more dynamic, flexible tools and processes. This in turn means the development
computing environment requires more adaptability. Systems specifically need to accommodate
shorter project sprints, be less static and more configurable-on-the-fly, and support collaborative
principles. In short, on-demand resources that can be shared across teams, managed by development,
and have traceability across projects.

Nick Gulrajani is a Senior
Solutions Architect with
CollabNet and can be
contacted at
nicholasg@collab.net
Darryl Bowler is a Senior
Systems Architect
Consultant with CollabNet
and can be contacted at
dbowler@collab.net

2

Access to flexible, on-demand cloud computing resources, either from a virtual private cloud within
the corporate data center or from public clouds, can provide such a flexible environment. While
clouds are interesting on their own (who doesn’t want all of Amazon’s computing resources available
to them?), having tools for managing the cloud resources specifically for development tooling and
workflow is key. Cloud management for development brings teams this level of control and visibility,
necessary in the new landscape.

Cloud management for development
With cloud management for development, teams ultimately drive the allocation and provisioning of
their systems, on-demand, as they need them. They can utilize the pooled physical and virtual
machine capacity of a cloud for more flexible automation and reuse across projects. Which means
less time spent configuring and finding errors when software moves from one stage to the next.

The benefits of thinking of development resources in this way – servers as ‘clouds’ or ‘pools’ of
virtual resources and version controlled configurations – is several fold for development teams:
• Managing and controlling entire development, build, and test process from one interface means

capacity is able to be monitored and optimized.
• The profiles (configurations) are stored and managed as reusable assets across a project or across

multiple projects, easily accessible by any developer in the project, or in the company.
• Visibility from the project team level and the management team as to how the resources are being

used, with the ability to charge back resources per project if desired.

Cloud management and virtual private clouds: in your data center and beyond
For the purpose of this article, the focus is on how to manage virtual private clouds for Application
Lifecycle Management (ALM). We generally define virtual private clouds as groups of public or
private server pools from your corporate data center or from public clouds like Amazon EC2. To
these server pools, a developer would apply some software stack or configuration required for their
task at hand. A typical enterprise use case for managing their cloud might be:

1. Engineering or Project Managers set up what clouds a project may have access to, to control
costs, manage security, supplement resources during peak use.

2. Individual hardware resources can be assigned to a ‘cloud’ that now has the capacity of their
combined resources. Dell class servers could be allocated to a development cloud, while HP
blades with a higher service level agreement and security could be allocated to a production
cloud. The cost associated with a machine in the former would be $.10 per hour while the latter,
$.25 per hour.

3. A project manager (or admin) allocates portions of either cloud to projects as the development or
production configuration. He can
limit projects to certain clouds; i.e.
for development purposes only
services from development cloud can
be used.

4. Finally, cost accounting data can be
derived by tracking usage by project
and user, so managers can optimize
which assets are being used for what,
at varying stages, and projects.

5. Amazon EC2 can be used to extend
resources temporarily (and at a very
low cost).

Introducing Development Services
To complete the concept of cloud
management for development, let’s also
introduce the concept of Development
Services or Build and Test Services.

 Figure 1: Build and Test Profiles

3

Continuous Integration
Continuous Integration is a key concept to
agile practices. It is based on the philosophy
of why wait until the end of a project to see if
all pieces of the system will work? Every few
hours the system should be fully integrated,
built and tested with all the latest changes so
adjustments can be made. This is instead of
waiting until modifications pile up or data is
replicated to the integration site from various
locations or individuals.

Development Services consist of code, build and test tools, applications, and infrastructure stacks that
can be stored and managed as configurations or profiles, and applied to an available server. These
profiles can be accessed and used globally and version controlled for consistency across the
application development lifecycle. So Development Services are simply: Software configurations or
profiles applied to an available server in the cloud, on demand.

Development in the cloud: A practical use case
One use case for software development in the cloud
combines the agile best practice of continuous
integration (CI) and some common collaborative
development tooling that has been used across
companies of varying sizes, locations, and industries.
Meaning this is quite scalable and flexible around the
size of your development team and type of products
you are building.

The cloud development use case encompasses the
flow of defects/requirements through phases of
development/builds/tests and back to submission of
new requirements or defects by various stake holders.
Automation at any point possible is a key capability,
including the ability to ‘turn on’ and ‘rip down’ virtual or physical systems as needed, in a cloud.

The workflow
Figure 2 illustrates the workflow for development in the cloud through the perspective of the various
contributors, along with their collaborative and cloud management tools:

1. Business Analyst /Quality Engineer (BA/QE) submits defects/requirements.
2. Project Manager (PM) picks tasks, sets priorities and assigns it to development.
3. Developer opens his favorite IDE and views his task. Begins to work on the defect, writes code.
4. May use the cloud management platform to build and test his code.

Figure 2: Continuous Integration in a virtual private cloud

4

5. Merges code and change sets.
6. Commits his code to a source code management tool (here, Subversion). This triggers a

Continuous Integration (CI) that takes place using the cloud management and build automation
tool (Figure 3).

7. CI tool monitors for code changes (See Figure 3).
8. Upon build failure, defect tracker is updated and notification is sent to the Development Team

(Figure 3).
9. Upon successful build, the defect tracker is updated automatically. If the test succeeds test

results are e-mailed to PM/QE. If the test fails QE is notified (Figure 3).

Virtual private cloud configuration
So what part of this happens in the virtual private cloud?

• Step 4 is where the developer may configure his own cloud system on demand for build and test.
• Steps 7, 8, and 9 - the CI tool and build automation - runs on the cloud systems.
• Once a build is successful, the artifacts are uploaded automatically to the Project Build Library on

the cloud systems. The Project Build Library (PBL) stores files created and used by the CI
process, and can be shared with others who may need to access the build results.

• A test system can be dynamically provisioned and build artifacts are downloaded and tested
automatically.

Figure 3 illustrates what the CI in your private cloud might look like, with virtual and physical
machines and tools for source code, tracking, build, and test. The following section will explain how
to build your own.

Figure 3: Software Development in the cloud workflow and stakeholders

7

8

9

5

Time boxing, short iterations,
& cloud management

Time boxing deserves a few more sentences as the
technique is common in agile. It means splitting up the
project into a number of separate time periods, each
2-6 weeks long. Each of the separate parts has their
own deadline and budget; where deadlines are fixed
but deliverables are adjusted. To meet the fast
turnaround times and splitting of the project,
engineering has to be able to allocate and configure
systems quickly, when needed. If constrained by
access to these systems or incorrect configurations,
the short iterations are impacted. On-demand cloud
management server pools can mitigate this.

Setting up your cloud development environment
Now how to do it: This section overviews some basic tools and principles to consider when
modifying your own environment for development in the cloud.

Tools and Framework
First, some basic tools and principals should
be considered.

Basic team processes
• All stake holders should be able to see and

make progress on the code and executables
in real time without having to replicate data
or have to change ownership

• A version control system should be
integrated with build automation tools

• Simple branching strategy (parallel
development) for development, integration
and release work

• Make incremental changes and test often
• Focus on small releases that provide most

business value
• Utilize aggressive milestone management, such as the agile imperative of time boxing.

Tools
Taking advantage of software development in the cloud does not require massive retooling – that’s
one of the benefits. You may already be using many of the basic collaboration and change
management tools that are commonly deployed by software teams world wide. (As a disclaimer,
many of the tools we talk about are those that CollabNet sells.) Table1 lists out the tools.

Table 1: Tools for Software Development in the Cloud
Tool Activity Example

Project Activity Tracking/
Collaboration

An integrated suite of Web-based issue tracking, project
management, and collaboration tools such as wikis and
document management.

CollabNet SourceForge

Automated build tools Build management and acceleration tools CruiseControl, ANT, Hudson and
Maven

Automated test tools Defect submission, automated tracking, etc. HP Quality Center, PushToTest

Source Code Management Commit Code, Branch and Merge Subversion

Integrated development
environment (IDE)

Developer desktop tool that interfaces with source code
management, debug, unit testing and other tools Eclipse, Visual Studio

Feedback mechanism

Notification system for status of builds, tests, issues, etc.
across the lifecycle. Email and SMS are good, however an
integrated tracker system enables more auditability of changes,
can use knowledge threading, and can associate build defects
with source code and/or other artifacts.

CollabNet SourceForge Tracker,
Email, SMS, wikis

Virtual private cloud
management

Physical and virtual machines that can be flexibly managed by
software development teams. Profiles (configurations) can be
version controlled and managed.

CollabNet CUBiT

Project Build Library (PBL)

Centralized area for daily builds, as CI is not always sufficient
for comprehensive testing. In addition, daily or weekly build,
integration, and test on a clean ‘production-like’ system,
configured with a standard production profile. PBL helps to
automate this task.

CollabNet CUBiT

6

Requirements for the tools in general include:

• Support for heterogeneous environments: so teams can have flexibility across their organization,
based on their specific project requirements

• Adaptive to current workflows and tools: Developers, Build, QA engineers want to stay in their
environment they are working

• Access to complementary tools and configurations across the development lifecycle

Development services and cloud management
CollabNet CUBiT- CollabNet’s Cloud Management for Development Services - can be configured to
manage a virtual private cloud with your own corporate computing resources, expanding to a public
cloud such as Amazon EC2 if desired. This type of capability is a key component for automating any
development environment. With such automation, the overhead for software teams to obtain and
manage computing resources is greatly reduced with the Development Build and Test Services
described earlier. New systems can be provisioned from the pre-defined profiles within minutes
while maintaining corporate security, auditability, and traceability.

Design goals for the cloud environment are:

• Each team must have autonomy over their own resources, and must have minimal delay in
provisioning their own systems

• Strict access controls so that resources are dedicated to project teams or to dedicated purpose (such
as build or test)

• Charge back for resources used. Even if the organization doesn’t charge back, teams can begin to
understand the resource costs associate with their projects

• Using agile processes such as continuous integration (CI)
• Automated build and test

This diagram overviews how CollabNet CUBiT manages development clouds of build and test
services – which are a combination of physical and virtual machines with profiles. Software
developers within their own projects have access to their own dedicated systems that are dynamically
shareable amongst projects members. CUBiT management features includes visibility of all system
resources within cloud,
auditing, capacity monitoring,
role based access and
accounting with charge back.
Profile management enables
version control and
traceability, for easily
configuring pre-defined
development stacks within
minutes.

Figure 4: Cloud Management with CollabNet CUBiT

7

Step 1: Configuring a virtual private cloud
Using CollabNet CUBiT you can configure multiple clouds for different use cases, and have the
ability to control the usage of those clouds. For example we could create clouds for continuous
integration build systems and assign that as an exclusive resource to that project; or share it among
any number of projects.

Figure 5: Configuring a virtual private cloud

Step 2: Giving developers easy access to cloud resources through their IDE’s
CollabNet provides a free plug-in to popular IDE’s such as Eclipse and Visual Studio. This allows
developers to seamlessly access the source code management tool, collaboration platform, and
development services (CollabNet Subversion, SourceForge Enterprise, and CUBiT respectively)
without having to leave their IDE.

Figures 6 and 7 show that from the IDE, you can browse all system resources within a cloud or
CUBiT domain, physical or virtual systems. The management interface can be viewed directly from
within the IDE; as well the systems can be securely accessed.

CUBiT Manager Web UI Lets You Easily Add a New Cloud
Name – Name of cloud, e.g. “CI Build Farm”
Summary
Description
Owning project – This is important as we will be defining a dedicated build farm cloud, that will only
used by developers in a dedicated project.
Public – Specifying “NO” will determine that the cloud is private
Delete Host on Deallocation - When systems use time expires they will automatically delete
Maximum host allocation – The maximum use time of an allocated system
Physical sources – Physical machines that will become the cloud

8

Figure 6: Browse and mange from your IDE

Figure 7: Remote access

Step 3: Creating reusable profiles for on demand build and test services
By creating reusable pre-defined configurations explained as profiles earlier, systems can be
consistently provisioned on demand, hence the concept of build and test services. Profiles are defined
in an XML format and are maintained in a Subversion repository under version control, so systems
can be restored exactly to a previous state if needed.

9

This profile snippet demonstrates how a
continuous integration build system can be
provisioned from CUBiT. This example
will install Java SDK, CruiseControl,
Apache Beehive, Apache Derby and
Tomcat, a full development and build
stack. Typically such a system can be
provisioned in less than 10 minutes, thus
meeting the demands of an agile
development team.

Step 4: How to use CUBiT Web Services to
automate cloud provisioning for testing
services
CUBiT has available an extensive set of REST based API’s that allow developers to automate what
would normally be complicated procedures. For example, you can dynamically provision build
systems in the cloud, then destroy those systems once test has completed. This is very useful for
testing milestone builds that require a “clean” system in a known good state.

Step 5: Determining how your cloud resources are being used and charge back
Finally, CUBiT gives teams and managers the ability for each system or profile to be used on an
allocated/hour basis. Even if this feature is not used to charge developments teams, it is still valuable
for determining the usage and allocation patterns of your resources.

As shown in Figure 8, CUBiT will graphically present in either a pie chart or table exactly who is
using the resources in any given project and their associated costs. This ability will become more
important as companies begin to dynamically allocate computing resources across projects which
requires managing their own virtual private clouds.

CUBiT API CloudCreateHosts HostDelete

Description Create one or more hosts from a cloud given the
host-type and size. The cloud will match the
host-type and size to one (or more) source(s)
from the cloud in order to fill the entire order.

Delete one or more hosts. The host must
not be in the Immutable state for this
method to work.

Requirements Any user who is a member of a project that has
been given permission to allocate from this
cloud can create instances.

• CUBiT Domain Admins can delete
any host, regardless if it is physical,
virtual, or from a remote cloud
• Users who are not CUBiT Domain
Admins can delete virtual guests if the
parent host is allocated to them
• Users who are not CUBiT Domain
Admins can also delete remote cloud
hosts allocated to them

Example cubit_api_client.py
--api-url=http://mgr.cubit-
demo.myproject.collab.net/cubit_api/
1
--api-user=userid --api-
key=xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxx -s
allocate_hosts_from_cloud
alloc_hours=2 cloud=FieldDemoCloud
host_type=basic_i386
profile=WindowsXPPro
project=cubit_demo1 size=small
userid=userid

cubit_api_client.py
--api-url=http://mgr.cubit-
demo.myproject.collab.net/cubit
_api/1
--api-user=userid --api-
key=xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxx –s delete_host
hosts=cu001.cubit-
demo.myproject.collab.net
userid=userid
--force

 <rpms action="install" path=
 "pbl://mgr/pbl/cubit_demo1/pub/cruisecontrol-apache/">

 <rpm>jdk-1_5_0_15-linux-i586.rpm</rpm>

 <rpm>cruisecontrol-bin-2.7.3-1.i386.rpm</rpm>

 <rpm>apache-beehive-1.0.2-1.i386.rpm</rpm>

 <rpm>db-derby-10.4.2.0-1.i386.rpm</rpm>

 <rpm>apache-tomcat-5.5.27-1.i386.rpm</rpm>

 </rpms>

10

Figure 8

Conclusions
Software development in the cloud brings adaptability and flexibility to any size project team. By
utilizing some common software development tools and a new one that introduces the concept of
cloud management and development services, teams can build their own cloud development
environment with continuous integration automation and ‘roundtrip’ feedback to provide on-demand
access and visibility across the development lifecycle.

