Asynchronous Systems

Meanings of the term Synchronous:

1. Orbital Satellites – stationary relative to the earth.

2. Neurobiology – mental processes that entrain to external stimuli.

3. Communication Systems – information is contained in frames with constant frame rates.

4. Radio and Radar detection – carrier is removed by an oscillator that locks onto the incoming carrier frequency.

5. Software

a. A function that blocks the caller until the callee finishes.

b. A component that collects input by waiting for data from a single sender at some point in its code, e.g., cin.

Meaning of the term Asynchronous for software systems:

An operation request is asynchronous if the call returns immediately, without waiting for the operation to complete. This requires that either:

6. The caller must poll for completion status, or:

7. The caller must tender a callback for the callee to use when finished, or:

8. The caller deposits a message in a queue for the callee to process at some later time, without expecting or waiting for a reply. The callee may, but is not required to, deposit a reply in a queue owned by the caller.
If a system is based on message passing, the callee can react to inputs from an arbitrary number of sources, arriving in any order, at any time.

Meaning of the term Synchronize (synonym – serialize):

Just to confuse you, the word synchronize, pronounced and spelled very like the term synchronous, means something entirely different:

1. For software, synchronize means to control access to a shared resource so that when one thread locks the resource for use, all other threads are denied access, even if the thread holding the lock is not running. A lock may apply only to some specific code location, or it may apply to an object for which many different code components hold references.

2. A thread can lock a resource by using one of the following (here we use the Win32 definitions):

a. Critical section – good only for threads in the same process

b. Mutex – named mutexes can be used to control access to resources shared between two or more processes as well as between threads in the same process.

c. Event – events are used in just about the same way, and under the same circumstances as mutexes.

d. Message queue – two or more threads can write to the same window with out conflict by posting or sending messages to the window.

3. The following resources are often shared between threads:

a. Global variables

b. I/O streams

c. Files

d. Windows

e. queues

When Would You Choose

An

Asynchronous System Architecture?
1. The system needs to be Reactive. That is, “…it does more than one thing at a time, performing each activity as a reactive response to some input.”

2. The system must have High Availability. One object may serve as a gateway interface to a service, handling each request by constructing a thread to asynchronously to provide the requested service.

3. The system’s services need to be Controllable. “Activities within threads can be suspended, resumed, and stopped by other objects.”

4. The system needs to send Asynchronous Messages. The calling object may not care when a requested action is performed, at least within some reasonable time frame.

5. The system may need to handle Bursty Events. Some events may occur in rapid succession, far faster than the system can react to them. When this happens, an asynchronous system can queue event notifications and work them off as time permits. This avoids loosing some event notifications while the system is busy handling earlier notifications. As long as the system can handle the average traffic load, this is an effective strategy, and almost universally used in bursty real-time systems.
� The material on this page is adapted from Concurrent Programming in Java, Doug Lea, Addison-Wesley, 1997

