CSE382 – Algorithms and Data Structures
Fall 2008

Project #3 – Test Sequences based on File Dependency
 due Friday, Nov 21
Purpose:

While testing large collections of files, as in a project’s developing baseline, it is important to start testing those files which depend on no others in the set. Next, test only those that depend only on already tested files, and repeat until all files are tested. This ensures that when we need to make changes based on problems we find in test, we don’t need to change any already tested files, e.g., we don’t want to keep retesting the same file over and over because we made changes to things it depends on.
There is one problem with this scenario, and that is mutually dependent files. They must be tested together as a unit, since changing any one of them requires retesting all.

In this project you will build a tool that allows you to discover good test sequences based on dependency analysis like you did on Project #1. First you build a dependency graph for all the files in the set, then evaluate its strong components – that identifies groups of mutually dependent files. Next you build a condensed graph that has one node for each strong component and an edge from a source node to a target node only if there is a dependency of at least one file in the source strong component to a least one file in the target strong component. This yields an acyclic graph. Finally you do a topological sort of the condensed graph to get a sorted condensed graph that gives a best test sequence for the given set of files.
Requirements:
Your TestGen program:
1. Shall be written in C# and build and in the ECS computer clusters using Visual Studio 2008.
2. Shall accept a path from the command line and determine the dependencies of all C# code files that reside in the directory subtree rooted at the given path.

3. Shall construct a dependency graph for those files, and evaluate all its strong components.

4. Shall create a condensed graph with one node for each strong component of the dependency graph and an edge from a source node to a target node if, and only if, the source node contains at least one file that depends on at least one file in the target node.

5. Shall do a topological sort of the condensed graph and display a test sequence for the files that starts testing only those file groups (strong components) that depend on no others and continues with only file groups that depend only on the tested groups.
6. To support generating builds for testing your TestGen program shall generate the transitive closure
 from the original dependency graph. That tells you, for any given file, all the files on which it depends, so you can programmatically create a build script (you don’t need to do that for this project).
Questions to answer (submitted in Answers.Txt)
Is this test sequence unique? Why or why not?

Is the condensed graph acyclic? Why or why not?

� Please use the Warshall Algorithm to do that.

