
Educating Engineers to Design Trustworthy Systems
Shiu-Kai Chin

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, New York 13244

http://lcs.syr.edu/faculty/chin

ABSTRACT

Cyberspace cannot exist without computer hardware, soft-
ware, and protocols. Forty years of progress has moved us
from a thousand transistors to a half-billion transistors per
chip. We have moved from single mainframe computers to
global connectivity. Safety, security, and trust in cyberspace
cannot exist without trustworthy computer hardware, software,
and protocols. Yet, the design principles and methods that
lead to trustworthiness remain neglected. This neglect exists
in large part because undergraduate students are not taught
how to design with security and trustworthiness in mind. This
paper addresses what could be done differently to educate
undergraduate computer engineering and computer science
students to meet this growing need.

Keywords: Education, security, trustworthiness

I. INTRODUCTION

The definition of insanity is doing the same thing
over and over and expecting different results1.

The education of undergraduate computer engineers and
computer scientists has not kept pace with the need for security
and trustworthiness. Security pundits routinely call for security
to be built into systems from the start. However, the lack
of education in rigorously relating security requirements to
designs results in engineers and computer scientists graduating
without any capability to meet this need. Given that the next
generation of engineers and computer scientists designs the
next generation of computer systems, why would we expect
the security and trustworthiness of future systems to improve
without a corresponding improvement in education?

Educators correctly point out that the undergraduate curricu-
lum and courses are already full. This has always been the
case. Nevertheless, curricular innovations are made to meet
critical needs. One example is the introduction of VLSI (very
large scale integrated) circuit design into the undergraduate
curriculum. In the 1970’s, VLSI design was thought to be
too exotic and complex to be taught at the undergraduate
level. Engineers of the time routinely spoke of the need for
“tall thin men,” i.e., engineers who could translate algorithms
into working silicon by relating algorithmic specifications to
register-transfer level designs implemented as custom VLSI
circuits. People of the time lamented the lack of VLSI de-
signers in professional practice. Comments such as, “there are

1Who actually said this is disputed, although this quote is often attributed
to Benjamin Franklin or Albert Einstein.

fewer VLSI designers than there are NFL (National Football
League) players” were common.

VLSI design is now routinely learned by undergraduate
electrical and computer engineers. We know now that enough
talented electrical and computer engineers were educated to
create Silicon Valley in the US and the global semiconductor
industry in Asia, all of which led to the Internet as we know
it today.

What can we do differently to achieve a similar revolution
for security and trustworthiness? This paper attempts to answer
this question. It is based on our experiences over the last
six years with both undergraduate and graduate students from
over forty different US universities. The rest of this paper is
organized as follows. Section II explores lessons learned from
VLSI. Sections III and IV describe the current situation and
what can be done to change it. We conclude in Section V.

II. LESSONS LEARNED FROM VLSI

What made VLSI circuit design feasible to teach at the
undergraduate level in the early 1980s?

1) Carver Mead’s landmark textbook Introduction to VLSI
Systems [7], which made VLSI accessible to electrical
and computer engineering faculty and practitioners,

2) free computer-aided design (CAD) tools such as
Magic—a circuit layout tool with a design-rule checker
[6]—and simulators like SPICE (Simulation Program
with Integrated Circuit Emphasis) [3], which made elec-
trically correct integrated circuit design possible,

3) MOSIS (Metal Oxide Semiconductor Implementation
Service) [1], an inexpensive (free) semiconductor fab-
rication service subsidized by the US government avail-
able to US universities, and

4) government-sponsored programs to teach VLSI design
to engineering faculty.

The above in combination had the following effects and
benefits for electrical and computer engineering faculty and
students:

1) Mead’s book offered simple but effective models of
circuits and layouts that made teaching a one-semester
VLSI course possible,

2) CAD tools such as Magic and SPICE provided an
independent means of checking designs and layouts,

3) university faculty and students could make their own
chips and was tangible evidence for students that they
could do something recognizable by industry and gov-
ernment that was highly regarded and innovative, and



2

Fig. 1. Rigorous derivation of behavior

4) government-sponsored programs aimed at university fac-
ulty produced a critical mass of faculty to teach VLSI
to undergraduates.

Mead’s textbook was crucial in that it was the first textbook
to present a continuous (and accessible) path through several
levels of abstraction: (1) stick diagrams in layouts as transis-
tors, (2) transistors as switches in circuits, (3) switches as logic
and registers in finite-state machines, (4) logic and finite-state
machines as data and control paths, and (5) data and control
paths as algorithms.

Today, VLSI is part of the undergraduate curriculum. We
can learn from the example of VLSI to move security and
trustworthiness into mainstream engineering.

III. SECURITY AND TRUSTWORTHINESS IN CURRENT
ENGINEERING PROGRAMS

The situation for security and trustworthiness is not unlike
the state of VLSI in the late 1970s.

1) There are relatively few engineers who can do secure
system design.

2) US economic and security interests are perceived to de-
pend on the security and trustworthiness of its systems.

3) Industry is actively seeking more graduates from any
field who are capable of thinking critically about secu-
rity.

4) The US federal government is attempting to increase the
number of students enrolling in degree programs that
teach security by offering scholarships to students and
recognition to US universities teaching security.

Currently, there is no consensus as to what and how security
(let alone trustworthiness) should be taught at the undergradu-
ate level. In contrast, there is considerable consensus in hard-
ware engineering. Most electrical and computer engineering
programs equip students with the following capabilities:

1) the capability to implement logic functions and storage
elements as digital circuits using transistors,

2) the capability to specify, design, and verify computer
hardware using propositional logic, finite-state ma-
chines, and CAD tools,

3) the capability to prototype computer hardware using
discrete components, field-programmable gate arrays
(FPGAs), and semi-custom and fully-custom VLSI cir-
cuits, and

4) the capability to implement algorithms in hardware.
The capabilities above are based on combining mathemat-

ical and logical representations (e.g., propositional logic and
finite-state machine theory) with implementation technologies

such as transistors and CMOS (complementary metal oxide
semiconductor) design. This combination enables hardware
engineers to do the following: when given a hardware design,
the primary inputs, and the values in the registers, hardware
engineers derive the value of signals anywhere in the inte-
grated circuit using logic and mathematics. This is illustrated
by the left side of Figure 1.

What would the equivalent situation be for security and
trustworthiness? When given (1) a request to access a protected
resource, (2) an access policy, and (3) assumptions about
whose authority is trusted and their jurisdiction, engineers
should be able to derive whether or not the reference monitor
guarding the resource should allow access to the resource. This
is illustrated by the right side of Figure 1.

Our view is calculating the yes or no access decisions is
central to security and trustworthiness in much the same way
as calculating the 1 or 0 digital values is central to hardware.
Reference monitors protecting resources have a similar role
to finite-state machine controlling the flow of data in hard-
ware. Policies in security specify allowable behavior in much
the same way as algorithms and instruction-set architectures
specify how hardware should behave.

IV. POLICY-BASED DESIGN

Policy and access control decisions exist at all levels of
abstraction, from physical memory up through abstract infor-
mation flow policies for confidentiality and integrity. Hence,
engineers must be able to rigorously deal with a wide variety
of access control policies and scenarios such as:

• deriving whether or not a virtual machine monitor
(VMM) should grant a virtual machine’s (VM) request
to execute any particular instruction,

• deriving the necessary policies for a delegate to operate
on behalf of someone or something, e.g., a health care
proxy speaking on behalf of a patient in a coma, and

• deriving whether or not read or write access should
granted to a person or process consistent with an infor-
mation flow policy such as Bell-LaPadula.

Saltzer and Schroeder’s oft-cited paper The Protection of
Information in Computer Systems [9], should be the foundation
of what every computer engineering student learns about
secure systems design. While [9] is known primarily for the
principle of least privilege, the majority of the paper is devoted
to process isolation and sharing policies and mechanisms at
the level of physical memory. Popek and Goldberg’s paper on
virtualization [8] is also part of the foundation for process iso-
lation and sharing given the widespread use of virtualization.
At the level of information flow policies, Bell and LaPadula’s
confidentiality policy [4] is an example of seminal work that
is usually included in any description of information policies.

While the above policies and mechanisms were first devel-
oped over thirty years ago, how are they presented in ways
that are amenable to formal derivation and calculation by
engineers?

For several years we have been experimenting with a
relatively simple multi-agent modal logic based on the work
of Abadi and colleagues [2]. We have both simplified and



3

Fig. 2. Virtual Machine and Virtual Machine Monitor

extended this logic by substituting delegation for roles and
adding the semantics for partially ordered confidentiality and
integrity labels and levels.

Logical rules in our access-control logic have the form

H1 · · · Hk

C,

where H1 · · · Hk and C are formulas in the logic. H1 · · · Hk

are the hypotheses or premises and C is the consequence or
conclusion. Informally, we read logical rules as “if all the
hypotheses above the line are true, then the conclusion below
the line is also true.” If there are no hypotheses, then the logical
rule is an axiom.

Logical rules are used to manipulate well-formed formulas
of the logic. If all the hypotheses of a rule are written down
(derived) then the conclusion of the rule also can be written
down (derived). If all the rules are sound (and we have proved
that the rules of our logic are in fact sound), then any theorems
derived using the rules are also sound.

We have successfully used this logic to teach access-control
methods formally and rigorously to rising juniors and seniors
from forty US universities as part of the US Air Force’s
Advanced Course in Engineering (ACE) Cyber Security Boot
Camp [5]. Both the logic and content for an 8-hour intensive
course are detailed in [5]. Since 2007, the Air Force ACE
program has increased the time devoted to our formal approach
to access control to 12 hours in 2008 and 21 hours in 2009.

Examples: As an example of what students in the ACE
program can do, we offer three examples. At the lowest
hardware level, students are given a memory access problem
using a virtual machine (VM) and virtual machine monitor
(VMM) as shown in Figure 2. They are asked to prove
that the request to execute the instruction LDA @5 (load the
accumulator with the contents of virtual address 5) should be
permitted if the memory segment base is 8, the segment size is
16, and the size of physical memory is 32. The logical theorem
they derive is

IR says 〈LDA @5〉 RR says 〈(8, 16)〉
IR says 〈LDA @5〉 ⊃ (RR says 〈(8, 16)〉 ⊃ ((8 + 5 < 32) ⊃

((5 < 16) ⊃ 〈LDA @5〉)))
〈LDA @5〉.

As an example of delegation, students consider a simplified
health-care proxy where Bob is Alice’s delegate in case Alice

is in a coma. Alice’s wishes are to not be resuscitated if she is
in a coma. Alice designates Bob to be her delegate to say
this when she cannot. She puts it in writing and signs it.
Hospital policies must be aligned with Alice’s if her wishes
are to be honored. Also, her signature must be recognized as
hers. Students are asked to (1) develop the hospital’s policies,
(2) state necessary trust assumptions, and (3) prove Alice’s
wishes will be honored.

Finally, students are given (1) Bell and LaPadula’s simple
security condition and *-property, and (2) a labeling and partial
ordering of security levels assigned to objects and subjects,
and asked to prove formally that Alice with a TOP SECRET
clearance can read file foo at the SECRET level.

V. CONCLUSION

Our experience shows that undergraduates are capable of
achieving the same level of rigor in designing and verifying se-
cure systems as they achieve in designing computer hardware.
The students we have taught from over forty US universities
are able to reason formally about mandatory and discretionary
access-control policies and decisions using the logic described
in [5]. Our observations lead us to conclude that policy-based
approach combined with formal logic to teaching undergrad-
uates about security and trust is both feasible and desirable.

REFERENCES

[1] Available at http://www.mosis.com/.
[2] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A

calculus for access control in distributed systems. ACM Transactions on
Programming Languages and Systems, 15(4):706–734, September 1993.

[3] W. Banzhaf. Computer-Aided Circuit Analysis Using PSpice. Prentice-
Hall, 1992, 2nd edition, 1992.

[4] D. Bell and L. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report Technical Report MTR-2547, Vol. I,
MITRE Corporation, Bedford, MA, March 1973.

[5] Shiu-Kai Chin and Susan Older. A rigorous approach to teaching access
control. In Proceedings of the First Annual Conference on Education in
Information Security. ACM, 2006.

[6] Robert N. Mayo, Michael H. Arnold, Walter S. Scott, Don
Starrk, and Gordon T. Hamachi. 1990 DECWRL/Livermore
Magic Release. Digital Western Research Laboratory, 100 Hamil-
ton Avenue, Palo Alto, CA, September 1990. available at
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-90-7.html.

[7] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison
Wesley, 1980.

[8] Gerald J. Popek and Robert P. Goldberg. Formal requirements for
virtualizable third generation architectures. Communications of the ACM,
17(7):412–421, July 1974.

[9] Jerome Saltzer and Michael Schroeder. The Protection of Information in
Computer Systems. Proceedings IEEE, 1975.


