
Certified Security by Design for the Internet of Things

Shiu-Kai Chin, Ph.D.

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, New York

March 2016

Abstract

Integrity and security are essential for societies dependent on interconnected people, devices, organizations, and ser-
vices. As engineers and computer scientists, our role is to provide critical infrastructure that is safe and secure. By
secure, we mean that at all levels, instructions are executed if and only if they are authenticated and authorized. This
property is known as complete mediation. Our goal is to provide engineers and computer scientists with the means to
fulfill our purpose by providing systems with credible assurances that complete mediation is satisfied. Assurances of
security and integrity require logical consistency from the top level with mission statements and commander’s intent,
down through organizational policies, rules of engagement and protocols, and ending with the execution of individual
instructions by people or devices. We use logic and computer-assisted reasoning tools to describe and verify consis-
tency. In particular, we use an access-control logic to reason about authentication and authorization. This logic is a
command, control, and communications (C3) calculus. Our C3 calculus is implemented as a conservative extension to
the Cambridge Higher Order Logic (HOL) theorem prover. Within HOL, we integrate our C3 calculus with an alge-
braic model of cryptographic operations and secure state machines, i.e., transition systems described using structural
operational semantics. Our methods for modeling transition systems are parameterized in terms of state-transition
functions, output functions, authentication functions, and security context. This makes our definitions and theorems
scalable to infinite-state systems and allows for specialization to particular missions, protocols, and systems. The
C3 calculus, algebraic models of cryptographic operations, and secure state machines implemented in HOL combine
to give us the capability we call certified security by design (CSBD)1. To illustrate the use of CSBD, we include
the development of a networked thermostat starting with a high-level CONOPS and refine it down to the level of an
infinite-state machine with data structures describing delegations, jurisdiction, public-key certificates, and root trust
assumptions.

1This technical report is the basis for Chapter 1: Certified Security by Design for the Internet of Things, appearing in Cyber-Assurance for the
Internet of Things, [3]

Contents

1 Introduction 4
1.1 Lessons from the Microelectronics Revolution . 4
1.2 Certified Security by Design . 5

1.2.1 Concepts of Operations . 5
1.2.2 A Networked Thermostat as a Motivating Example . 6
1.2.3 Assurance Requirements . 8

1.3 Report Outline . 8

2 An Access-Control Logic 9
2.1 Syntax . 9
2.2 Semantics . 10
2.3 Inference Rules . 11
2.4 Describing Access-Control Concepts in the C2 Calculus . 11

3 An Introduction to HOL 14

4 The Access-Control Logic in HOL 20
4.1 Syntax of the Access-Control Logic in HOL . 20
4.2 Semantics of the Access-Control Logic in HOL . 21
4.3 C2 Inference Rules in HOL . 21

5 Cryptographic Components and Their Models in Higher Order Logic 25
5.1 Symmetric-Key Cryptography . 25
5.2 Cryptographic Hash Functions . 27
5.3 Asymmetric-Key Cryptography . 27
5.4 Digital Signatures . 29

6 Adding Security to State Machines 33
6.1 Instructions and Transition Types . 34
6.2 High-Level Secure State-Machine Description . 35
6.3 Secure State-Machines Using Message and Certificate Structures . 39

7 A Networked Thermostat Certified Secure by Design 42
7.1 Thermostat Commands: Privileged and Non-Privileged . 42
7.2 Thermostat Principals and Their Privileges . 44
7.3 Thermostat Use Cases . 45
7.4 Security Contexts for the Server and Thermostat . 48
7.5 Top-Level Thermostat Secure State-Machine . 49
7.6 Refined Thermostat Secure State-Machine . 59
7.7 Equivalence of Top-Level and Refined Secure State-Machines . 73

8 Conclusions 78

A HOL Definition of ACL Syntax and Kripke Structures 79

2

B HOL Definition of ACL Semantics 80

C HOL Definition and Properties of Transition Relation TR 82
C.1 HOL Source Code Defining TR . 82
C.2 Defining Properties of TR . 82

D HOL Definition and Properties of Transition Relation TR2 85
D.1 HOL Source Code Defining TR2 . 85
D.2 Defining Properties of TR2 . 86

E HOL Definition of isAuthenticated 89

3

Chapter 1

Introduction

Incorporating security into the design of components used in the Internet of Things (IoT) is essential for securing the
operations of the IoT and the cyber-physical infrastructure upon which society depends. The pervasiveness of the IoT
and its part in critical infrastructure requires incorporating security into the design of components from the start.

There are several challenges to incorporating security into the design of IoT components from the start. These
challenges include:

1. Precisely describing confidentiality and integrity policies in ways that are amenable to formal reasoning.

2. Maintaining logical consistency among confidentiality and integrity policies and implementation at all levels of
abstraction, from high-level behavioral descriptions at the user level, down to implementations at the level of
state machines and transition systems.

3. Providing compelling evidence of security that is quickly and easily reproducible by certifiers.

This is not the first time the electrical and computer engineering profession has faced these challenges. In fact,
the IoT is compelling evidence of successfully meeting the challenges of design, accountability, consistency, and
verifiability across multiple levels of abstraction. To learn and draw inspiration from the past, we need only look back
to the 1970s and 1980s when the challenges of designing and implementing very large scale integrated (VLSI) circuits
was encountered and overcome.

1.1 Lessons from the Microelectronics Revolution

In the 1970s, it was inconceivable that designers of algorithms and instruction-set architectures could fashion special-
ized integrated circuits down to the level of physical layouts. Each level of design had its collection of design detail,
e.g., transistor models at the circuit design level, and minimum separation distances among metal and polysilicon
features at the layout level.

The union of all design concepts spanning algorithm design down to layouts was too much for a single designer
to grasp conceptually. The prospect of a single designer accounting for all design details spanning algorithm to layout
design was even more daunting. The key insight that made VLSI design possible was [9]

“... to sidestep tons of accumulated vestigial practices in system architecture, logic design, circuit design
and circuit layout, and replace them with a coherent but minimalist set of methods.”

Specifically, the minimalist set of methods made use of:

• parameterization i.e., specifying λ as the maximum minimum feature size in circuit layouts,

• idealized transistor behavior as switch behavior,

• consistent interpretations of voltages, transistor state, truth values,

• interpretations linking models at multiple levels, spanning layouts to transition systems, and

• computer-aided design (CAD) tools.

4

Computer hardware design is often called logic design for good reason. Propositional logic pervades all levels
of abstraction in VLSI design. Transistor circuits and layouts are related to logic operators such as negation, nand,
and nor. Networks of logic gates implement arithmetic logic units, multiplexers, flip-flops, and registers that are the
components of datapaths. Base 2 arithmetic is used precisely because operations on binary numbers conveniently map
to logic operations. Timing and control is achieved using finite-state machines. Finite-state machines are parameter-
ized by next-state and output functions described by propositional logic formulas and implemented by combinational
logic components. Instruction-set architectures are implemented by a combination of data and control paths whose
operations are controlled and sequenced by finite-state machines.

The VLSI-inspired vision for securing the integrity of the Internet of Things is this: harmonize multiple levels of
abstraction by using the same logic at all levels to describe behavior at each level. This enables designs at each level
of abstraction to be related to behavior at other levels. This provides the means for a continuous thread of logical
consistency and a foundation for formally verified assurances of security and integrity.

The aspects of security and integrity of the IoT upon which we focus revolve around answering the question, when
given a request to execute a command within a security context of policies, authorizations, and trust assumptions,
should we execute the command or not? This question, and others like it, falls squarely within the realm of access
control. Access control is a central concept behind firewalls, reference monitors, security kernels, and hypervisors.
What is needed is an access-control logic that describes our security and integrity concerns in much the same way that
propositional logic describes functional behavior.

For pragmatic reasons, an access-control logic, and the methodologies built upon it, must integrate well with the
propositional logic, models, and design methods of computer hardware designers. As is often the case, simplicity
brings the benefits of wide applicability, broad utility, and durability, as illustrated by propositional logic in hard-
ware design. The access-control logic we use in this chapter is form of propositional modal logic, i.e., a logic that
incorporates modes (e.g., states, worlds, configurations, or possibilities) into determining the truth value of logical
propositions. This is an incremental step above the propositional logic of conventional hardware design and enables
us to blend access control into machine design and verification.

Before delving into the details of a particular access-control logic, we describe the objectives of what we call
certified security by design, provide a simple motivating application as context, and state the critical requirements that
must be satisfied to make certified security by design a reality.

1.2 Certified Security by Design
Certified Security by Design (CSBD) is an approach intended to design security into systems from the start and provide
credible evidence that security claims are true. The goals of CSBD are:

1. Complete mediation—authenticating and authorizing—all commands at all levels from high-level concepts of
operations down to transition systems realized as state machines in hardware, and

2. Formal proofs of integrity and security that are easily and rapidly verified by third parties, similar to the
way VLSI (very large scale integrated) circuits are described and verified using an array of electronic design
automation (EDA) tools.

1.2.1 Concepts of Operations
Users of systems, where systems are machines, software applications, protocols, or processes coordinating the work
among human organizations, typically have behavioral models of the systems they use. These models are concepts
of operations or CONOPS. As defined by IEEE Standard 1362 [1], a CONOPS expresses the “characteristics for a
proposed system from a user’s perspective. A CONOPS also describes the user organization, mission, and objectives
from an integrated systems point of view.”

The US military has a similar definition of CONOPS in Joint Publication 5-0, Joint Operational Planning [2].
For military leaders planning a mission, a CONOPS describes “how the actions of components and organizations are
integrated, synchronized, and phased to accomplish the mission.”

Put more plainly, a CONOPS describes the who, what, when, and why. When we explicitly address security and
integrity concerns, we state how we know with whom we are dealing and what authority they have, i.e., how we
authenticate and authorize people, processes, statements, and commands.

5

Figure 1.1 Flow of Command and Control (C2) for a Simple CONOPS

Bob
Context for Bob's actions
- trust assumptions
- jurisdiction
- policies

Alice's order or request Bob's order or request

Needed for assurance of security and integrity
- all actions taken are justified by formal proof
- commands are executed if and only if they are
 authenticated and authorized

Figure 1.1 shows a diagram of a simple CONOPS. Here is its interpretation.

1. The flow of command and control in this figure is from left to right. Alice issues a command by some means
(speaking, writing, electronically, telepathy, etc.). This is symbolized by

Alice says 〈command1〉.

2. The box in the center labeled Bob shows Bob receiving Alice’s command on the left. Inside the box are the
things Bob “knows”, i.e., the context within which he attempts to justify acting on Alice’s command. The
context might include a policy that if Bob receives a particular command, such as go, then he is to issue another
command, such as launch. Typically, before Bob acts on Alice’s command, his operational context includes
statements or assumptions such as Alice has the authority, jurisdiction, or is to believed on matters related to the
command she has made.

3. The arrow coming from the right hand side of the box shows Bob’s statement or command, which is symbolized
by

Bob says 〈command2〉.

4. What Figure 1.1 shows is one C2 sequence starting from left to right. Bob gets an order from Alice. Bob
decides based on Alice’s order and what he knows (the statements inside the box), that it is a good idea to issue
command2. This is symbolized by

Bob says 〈command2〉.

Regarding the comment in Figure 1.1, for assurance what we want is a logical justification of the actions Bob takes
given the order he receives and the context within which he is operating. For us, logical justifications are proofs in
mathematical logic.

Security vulnerabilities often result from inconsistencies among CONOPS at various levels of abstraction. Military
commanders might assume only authorized operators are able to launch an application, whereas the application itself
might incorrectly trust that all orders it receives are from authorized operators and never authenticate the inputs it
receives. Any design for assurance methodology must address authentication and authorization in order to avoid
vulnerabilities due to unauthorized access or control. Rigorous assurance requires mathematical models and proofs.
Our intent is illustrate a structured way to achieve security by design.

To illustrate the above concepts, throughout this chapter we apply them within the context of securing the integrity
of a networked thermostat. We picked this example because (1) its function and purpose is easily understood, and (2) in
a distributed control environment, its security and integrity concerns are representative of many other C2 applications.

1.2.2 A Networked Thermostat as a Motivating Example
Figure 1.2 shows a networked thermostat and its operating environment. The thermostat has a keyboard and a network
interface. Commands received by the thermostat from its keyboard are assumed to originate from the thermostat’s
Owner. The Owner has the authority to execute any command.

6

Figure 1.2 A Networked Thermostat and Its Operating Environment

Utility Server Thermostat
Network
Interface

Keyboard/Display

Owner Owner

The thermostat also receives commands via a network interface to a remote Server. The Server relays commands
from the Owner via the Owner’s account on the Server. The Server relays commands from the Utility supplying
energy to the Owner. The Utility has authority over the thermostat’s operation if granted that authority by the Owner.

The reasons for granting authority to the Utility include reducing electrical loads on the grid during peak usage
times. The benefits to the Owner are reduced electricity costs if cooling during the day can be deferred while the
Owner is at work or away. The benefits to the Utility include deferred use of expensive generators as well as reduced
strain on distribution systems.

Upon request, the thermostat reports its status back to the Owner and the Utility via the Server or using the physical
display on the thermostat itself. The status of the thermostat is given by its state. Informally, the state of the thermostat
is its operating mode and its temperature setting.

We consider three use-cases with respect to Figure 1.2.

1. The Owner issues commands via the thermostat’s keyboard.

2. The Owner issues commands to the thermostat via the Owner’s account on the Server.

3. The Utility issues commands to the thermostat via the Server.

At a high level, the thermostat commands are as follows.

1. Setting the temperature value. This command has security considerations as losing control over the temperature
potentially is a threat to the safety of lives and property.

2. Enabling the Utility to exercise control over setting the temperature. This command has security considerations
as Owners want to make sure they have the ultimate authority over their thermostat.

3. Disabling the Utility to exercise control over setting the temperature. This command has similar security con-
siderations as the command used to enable the Utility to alter the thermostat’s temperature setting.

4. Reporting the Status of the thermostat, which is displayed on the thermostat and sent to the Server. This
command does not alter the thermostat’s temperature setting or operating mode. As such, there are no security
sensitivities with respect to reporting status. For our illustration, we assume there are no privacy concerns. If
needed, privacy is handled in the usual ways including multi-level security, role-based access control, access-
control lists, etc.

Thermostat Security CONOPS At this point in conceptualizing the networked thermostat, we need to consider the
concepts we use to secure integrity of the thermostat’s operations. We incorporate the following concepts into our
design:

• Authenticating principals issuing commands using mechanisms such as (1) userids and passwords associated
with Owner accounts on the Server, and (2) cryptographically signed messages from the Server to the thermostat
and from the Utility to the Server,

7

• Authorizing principals issuing commands by making explicit the context in which authorization is done, i.e.,
public-key certificates, root trust assumptions on keys and jurisdiction, and policies stating what actions are
taken in particular circumstances, and

• Executing or trapping commands based on a principal’s authority and the security sensitivity of the command
they are attempting to execute.

1.2.3 Assurance Requirements
The description of the networked thermostat example and the goals of CSBD lead us to the following requirements to
realize the goals of CSBD.

• A C2 calculus used to reason about access-control decisions. The calculus we used is fully described in [8] and
is an extension and modification of an access-control logic for distributed systems [4].

• Computer-assisted reasoning tools to (1) formally verify all proofs and assurance claims, and (2) enable rapid
reproduction of all results by third parties and certifiers. We use the Cambridge University HOL-4 (Higher
Order Logic) theorem prover [11]. It is freely available and has been in use since 1987.

• A model of idealized cryptographic operations and their properties implemented in HOL.

• Models of state machine transition systems incorporating authentication, authorization, next-state functions, and
output functions as parameters in support of security and to avoid state explosion. Our networked thermostat
illustration build upon the foundations of virtual machines, in particular [12].

1.3 Report Outline
The remainder of this report is organized as follows.

• Chapter 2 defines the syntax, semantics, and inference rules for an access-control logic used to reason about
command and control (C2).

• Chapter 3 gives an overview of the Higher Order Logic (HOL) theorem prover we use as a computer-assisted
reasoning (CAR) tool. The access-control logic is implemented as a conservative extension to HOL.

• Chapter 4 describes the HOL implementation of the access-control logic and the C2 calculus.

• Chapter 5 describes algebraic models of ideal cryptographic operations such as hashing, symmetric and asym-
metric encryption, and cryptographic signing and verification. These algebraic models are implemented in HOL.

• Chapter 6 shows how security is built into state machines by labeled-transition descriptions incorporating secu-
rity policies described in the access-control logic.

• Chapter 7 is a detailed example showing how security is designed into a networked thermostat.

• Chapter 8 contains our conclusions.

8

Chapter 2

An Access-Control Logic

This section describes an access-control logic that is our C2 calculus. Our description is brief for space considerations.
A full account appears in [8]. We present the syntax, semantics, and inference rules in the following sections.

To follow the thermostat example, readers will need to comprehend the syntax and inference rules of the C2
calculus. Justifying the logical soundness of the C2 logic requires understanding the semantics of the logic. However,
the semantics may be skipped if the primary purpose is to follow the thermostat example. Of course, the syntax,
semantics, and inference rules are fully implemented and verified in HOL.

2.1 Syntax
The syntax of the logic has two major components.

1. The syntax of principals, where principals are informally thought of as the actors making statements, e.g.,
people, cryptographic keys, userids and passwords associated with accounts, etc.

2. The syntax of logical formulas.

The syntax of principal expressions Princ is defined as follows.

Princ ::= PName / Princ & Princ / Princ | Princ

“ & ” is pronounced “with”; “ | ” is pronounced “quoting”. The type of principal expressions is composed of principal
names, e.g., Alice, cryptographic keys, and userid with passwords. Compound expressions are created with & and | .

Examples of principal expressions include

Alice KAlice Alice & Bob Alice | Bob

Informally, Alice is Alice, KAlice is Alice’s cryptographic key, Alice & Bob is Alice and Bob together, Alice | Bob is
Alice quoting Bob (relaying his statements).

The syntax of logical formulas Form consists of propositional variables, expressions using the usual propositional
operators corresponding to modal versions of negation, conjunction, disjunction, implication, and equivalence, coupled
with operators⇒ (pronounced “speaks for”), says, controls, and reps.

In this presentation of the C2 calculus, we the same symbols for negation, conjunction, disjunction, implication,
and equivalence in propositional logic. In the HOL implementation of the access-control logic, negation, conjunction,
disjunction, implication, and equivalence in the access-control logic are represented using different symbols to clearly
distinguish between access-control logic formulas and propositional logic formulas.

Form ::= PropVar / ¬ Form /

(Form∨Form) / (Form∧Form) /

(Form⊃ Form) / (Form≡ Form) /

(Princ⇒ Princ) / (Princ says Form) /

(Princ controls Form) / Princ reps Princ on Form

Figure 2.1 is a table of typical C2 statements and their representation as formulas in the C2 calculus.

9

Figure 2.1 CONOPS Statements and Their Representation in the C2 Calculus
C2 Statement Formula
If ϕ1 is true then ϕ2 is true (typical of policy statements) ϕ1 ⊃ ϕ2
Key associated with Alice Ka⇒ Alice
Bob has jurisdiction (controls or is believed) over statement ϕ Bob controls ϕ

Alice and Bob together say ϕ (Alice & Bob) says ϕ

Alice quotes Bob as saying ϕ (Alice | Bob) says ϕ

Bob is Alice’s delegate on statement ϕ Bob reps Alice on ϕ

Carol is authorized in Role on statement ϕ Carol reps Role on ϕ

Carol acting in Role makes statement ϕ (Carol | Role) says ϕ

Figure 2.2 Kripke Semantics of Access-Control Logic Formulas

EM [[p]] = I(p)

EM [[¬ϕ]] = W −EM [[ϕ]]

EM [[ϕ1 ∧ϕ2]] = EM [[ϕ1]]∩EM [[ϕ2]]

EM [[ϕ1 ∨ϕ2]] = EM [[ϕ1]]∪EM [[ϕ2]]

EM [[ϕ1 ⊃ ϕ2]] = (W −EM [[ϕ1]])∪EM [[ϕ2]]

EM [[ϕ1 ≡ ϕ2]] = EM [[ϕ1 ⊃ ϕ2]]∩EM [[ϕ2 ⊃ ϕ1]]

EM [[P⇒ Q]] =

{
W, if Ĵ(Q)⊆ Ĵ(P)
/0, otherwise

EM [[P says ϕ]] = {w|Ĵ(P)(w)⊆ EM [[ϕ]]}
EM [[P controls ϕ]] = EM [[(P says ϕ)⊃ ϕ]]

EM [[P reps Q on ϕ]] = EM [[(P | Q says ϕ)⊃ Q says ϕ]]

2.2 Semantics

The semantics of the access-control logic uses Kripke structures. A Kripke structure M is a three-tuple 〈W, I,J〉,
where:

• W is a nonempty set, whose elements are called worlds.

• I : PropVar→ P (W) is an interpretation function that maps each propositional variable p to a set of worlds.

• J : PName→ P (W ×W) is a function that maps each principal name A into a relation on worlds (i.e., a subset
of W ×W).

The semantics of principal expressions Princ involves J and its extension Ĵ. We define the extended function
Ĵ : Princ→ P (W ×W) inductively on the structure of principal expressions, where A ∈ PName.

Ĵ(A) = J(A)

Ĵ(P & Q) = Ĵ(P)∪ Ĵ(Q)

Ĵ(P | Q) = Ĵ(P)◦ Ĵ(Q).

Note: R1 ◦R2 = {(x,z) | ∃y.(x,y) ∈ R1 and (y,z) ∈ R2}.
Each Kripke structure M = 〈W, I,J〉 gives rise to a semantic function

EM [[−]] : Form→ P (W),

where EM [[ϕ]] is the set of worlds in which ϕ is considered true.
EM [[ϕ]] is defined inductively on the structure of ϕ, as shown in Figure 2.2. Note, in the definition of EM [[P says ϕ]],

that Ĵ(P)(w) is simply the image of world w under the relation Ĵ(P).

10

Figure 2.3 Inference rules for the access-control logic

P controls ϕ
def
= (P says ϕ)⊃ ϕ P reps Q on ϕ

def
= P | Q says ϕ⊃ Q says ϕ

Modus Ponens
ϕ ϕ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ
Controls

P controls ϕ P says ϕ

ϕ

Derived Speaks For
P⇒ Q P says ϕ

Q says ϕ
Reps

Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

& Says (1)
P & Q says ϕ

P says ϕ∧Q says ϕ
& Says (2)

P says ϕ∧Q says ϕ

P & Q says ϕ

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Idempotency of⇒
P⇒ P

Monotonicity of⇒ P′⇒ P Q′⇒ Q
P′ | Q′⇒ P | Q

2.3 Inference Rules
Our use of the access-control logic as a C2 calculus rarely, if ever, uses Kripke structures explicitly. Instead, we rely
upon inference rules to derive expressions soundly.

An inference rule in the C2 calculus has the form

H1 · · · Hk

C,

where H1 · · ·Hk is a (possibly empty) set of hypotheses expressed as access-control logic formulas, and C is the
conclusion, also expressed as an access-control logic formula. Whenever all of the hypotheses in an inference rule are
present in a proof, then the rule states it is permissible to include the conclusion in the proof, too.

The meaning of sound depends on the the definition of satisfies in the access-control logic. A Kripke structure M
satisfies a formula ϕ when EM [[ϕ]] =W , i.e., ϕ is true in all worlds W of M . We denote M satisfies ϕ by M |= ϕ.

A C2 calculus inference rule is sound if, for all Kripke structures M , whenever M satisfies all the hypotheses
H1 · · ·Hk, then M also satisfies C, i.e., if for all M : M |= Hi for 1≤ i≤ k, then it must be the case that M |=C.

All the inference rules presented here and in [8] are proved to be logically sound. Figure 2.3 are the core inference
rules of the access-control logic.

2.4 Describing Access-Control Concepts in the C2 Calculus
To illustrate how the C2-calculus is used to reason about authentication and authorization, we consider the following
use case.

Example 2.4.1
Bob guards access to sensitive files. He receives requests electronically and says yes or no to each request. Specifically,
the requests he receives are are digitally signed by a cryptographic key. Keys are associated with people, e.g., Alice.
If the person, say Alice, who owns the key has permission to access the file, then Bob says yes.

Suppose Bob receives an access request signed by Alice’s key KA, and that Alice is permitted to access the files.
We represent the request, the link between Alice and her key KA, and her permission to access the files by the following
statements in the access-control logic.

1. Digitally signed request received by Bob: KA says 〈access f iles〉.

2. KA is Alice’s key: KA⇒ Alice.

11

3. Alice has permission to access the files: Alice controls 〈access f iles〉

Using the inference rules of the C2 calculus, Bob justifies his decision to grant Alice’s request by the following
proof, where lines 1–3 are the assumptions, and everything that follows is derived using the inference rules of the C2
calculus.

1. KA says 〈access f iles〉 Digitally signed request
2. KA⇒ Alice Key associated with Alice
3. Alice controls 〈access f iles〉 Alice’s capability to access files
4. Alice says 〈access f iles〉 2, 1 Derived Speaks For
5. 〈access f iles〉 3, 4 Controls

Line 4 amounts to authenticating that Alice is the originator of the access request within the context established by
lines 1 through 3. Line 3 establishes Alice’s authority to access the files. Line 5 is Bob’s deduction that granting Alice
access is justified.

As a result of the proof, Bob has a derived inference rule, which he knows is sound because he derived it using the
inference rules in Figure 2.3. The derived inference rule is

KA says 〈access f iles〉
KA⇒ Alice Alice controls 〈access f iles〉

〈access f iles〉

The inference rule amounts to a checklist. If he (1) gets a message cryptographically signed with KA, (2) KA is Alice’s
key, and (3) Alice has permission to access the files, then granting access to Alice is justified.

Looking back at Figure 1.1, the inference rule is a logically sound description of what Bob does in the top-level
CONOPS. The inference rule makes explicit the policies and trust assumptions and how they combine to justify Bob’s
actions. ♦

Delegation is widely used. Our definition of delegation is given by the definition of reps and the Reps inference
rule.

P reps Q on ϕ
def
= P | Q says ϕ⊃ Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

The consequence of the definition of reps in the first formula shows is this: if you believe Alice reps Bob on ϕ is true,
then if Alice says Bob says ϕ you will conclude that Bob says ϕ. In other words, Alice is trusted when she says Bob
says ϕ.

In a command and control application, if you believe (1) Bob is authorized on command ϕ, (2) Alice is Bob’s
delegate or representative on a command ϕ, and (3) Alice says Bob says command ϕ, then you are justified to conclude
the command ϕ is legitimate. This is the Reps inference rule.

Reps is particularly useful for delegating limited authority to delegates. Unlike ⇒, where all statements of one
principal are attributable to another, Reps specifies which statements made by a delegate are attributable to another.

Reps is used when people are acting in defined roles, for example the roles of Commander and Operator. The
following example show the use of reps in the context of roles.

Example 2.4.2
Suppose we have two roles, two people, and two commands. The roles are Commander and Operator; the people
are Alice and Bob; the two commands are go and launch. A Commander has the authority to issue a go command.
An Operator has the authority to issue a launch command whenever a go command is received from a Commander.
Commanders are not authorized to launch. Operators are not authorized to launch unless they receive a go command.

In this scenario, Alice is the Commander and Bob is an Operator. Notice that this scenario is captured by Figure 1.1.
We represent the notion that Alice and Bob are acting in their assigned roles of Commander and Operator using

quotation and delegation. With Figure 1.1 in mind, we do the following analysis from Bob’s perspective.

12

1. Message Bob receives signed by Alice’s key:

KA |Commander says 〈go〉

2. Bob’s belief that KA is Alice’s key:

KA⇒ Alice

3. Bob’s recognition that Alice is acting as Commander when issuing a go command:

Alice reps Commander on 〈go〉.

4. Bob’s belief that Commanders have authority to issue go commands:

Commander controls 〈go〉.

5. The policy guiding Bob’s actions, when he authenticates and authorizes a go command, then he is to issue a
launch command:

〈go〉 ⊃ 〈launch〉

The input in line 1 with the other 4 assumptions as security context for Bob’s decision is sufficient for Bob to issue the
command KB | Operator says 〈launch〉. The proof is as follows using the inference rules in Figure 2.3.

1. KA |Commander says 〈go〉 Input signed by KA
2. KA⇒ Alice Trust assumption—KA is Alice’s key
3. Alice reps Commander on 〈go〉 Trust assumption—Alice is acting as a Com-

mander when issuing a go command
4. Commander controls 〈go〉 Trust assumption—Commanders have au-

thority to issue a go command
5. 〈go〉 ⊃ 〈launch〉 Policy assumption—if go is true then so is

launch
6. Commander⇒Commander Idempotency of⇒
7. KA |Commander⇒ Alice |Commander 2, 6 Monotonicity of⇒
8. Alice |Commander says 〈go〉 7, 1 Derived Speaks For
9. 〈go〉 4, 3, 8 Reps

10. 〈launch〉 9, 5 Modus Ponens
11. KB | Operator says 〈launch〉 10 Says

The above proof justifies a derived inference rule showing the soundness of Bob’s actions:

KA |Commander says 〈go〉
KA⇒ Alice Alice reps Commander on 〈go〉
Commander controls 〈go〉 〈go〉 ⊃ 〈launch〉

KB | Operator says 〈launch〉

The derived inference rule is a logical checklist. If (1) Bob receives a cryptographically signed message using key
KA issuing a go order while quoting a Commander role, (2) KA is Alice’s key, (3) Alice is authorized to issue a go
command as a Commander, (4) Commanders have the authority to issue a go command, and (5) the policy is when go
is true the launch is true, then issuing KB | Operator says 〈launch〉 is justified, where KB is Bob’s key. ♦

We now turn our attention to automated support for reasoning using the HOL theorem prover for the C2 calculus
in the next section, and cryptographic operations and for state transition systems in subsequent sections.

13

Chapter 3

An Introduction to HOL

Automated tools are essential for any realistic design and verification methodology. In this section, we introduce our
use of the HOL theorem prover [11]. A detailed description is infeasible given space limitations, and is beyond the
scope of this chapter. Instead, we present an introduction to how proofs are done in HOL with enough detail to enable
a reading level of comprehension. The HOL system is equipped with several tutorials, user guides, and encyclopedic
manuals. HOL and its documentation are available freely from online sources1.

The advantages of using computer-assisted reasoning (CAR) tools in general and HOL specifically include:

1. formal verification of assurance claims,

2. automated support to manage large and complicated formulas and proofs,

3. access to vast and comprehensive libraries of verified theories containing definitions and theorems spanning
mathematical logic, programming languages, instruction sets, and microprocessors, allowing designers to easily
build upon a logically sound foundation of previous work,

4. LATEX macros of definitions, theorems, and formulas automatically generated by HOL, thus reducing or elimi-
nating the burden of manually typesetting formulas and introducing typographical errors, while enabling easy
updates to documentation when theories are modified, and

5. rapid and easy reproduction by third parties of all verification results.

All of the above factors combine to produce precision, accuracy, and confidence in assurance results. Results verified
in HOL enable (1) system designers and verifiers to have confidence in their own work, and (2) others with more tech-
nical sophistication and experience, to reproduce and have confidence in results produced by those with comparatively
less experience and sophistication.

In the following three examples, we define two parameterized theories of state machines and show they are equiv-
alent. In the next section, we show the syntax, semantics, and HOL theorems that define the access-control logic in
HOL.

Example 3.0.1
Suppose we wish to define state machines parametrically in terms of their state, input, and next-state transition
functions, as shown in Figure 3.1. States and inputs are envisioned to be any type and each may have an infinite
number of elements. The notation in Figure 3.1 is used in HOL. Terms and their types are represented in HOL by
hol term : hol type, i.e., HOL terms followed by their types separated by a colon. For example 1 : num, states that 1
is of type num in HOL.

HOL supports polymorphism by using type variables. Type variables in HOL all have a leading prime symbol,
′. Figure 3.1 shows state Si with type variable ′state, symbolized by Si : ′state. The expression x : ′input says x is
polymorphic with type variable ′input, which also can be any type. As ′state and ′input are different type variables,
the types of Si and x need not (and typically are not) the same.

The state-transition behavior of a deterministic state-machine is defined by its next-state function. In Figure 3.1
this is the function NS. What the figure shows is that if the machine is in state Si, then the next state of the machine is
NS Si x, where the type signature of NS is ′state→′ input→′ state.

The arrow labeled with x : ′input from state Si to state NS Si x is modeled as an inductively defined relation in
HOL. Inductive relations are used to define familiar sets of objects, for example the set of even numbers. The set of
even numbers is specified by the following rules:

1Readers who are interested in using HOL are able to download its sources and executable images from sites easily found by common search
engines

14

Figure 3.1 Parameterized State-Transition Relation

1. 0 is even.

2. If n is even then n+2 is even.

3. The set even is the smallest set satisfying rules (1) and (2).

HOL has an extensive library of theories and functions, including functions for inductive definitions. The code snippet
below illustrates the use Hol_reln to define inductively the predicate even on the natural numbers. The function
Hol_reln when applied to its arguments corresponding to rules (1) and (2) above, returns three theorems, which are
assigned to names even rules, even induction, and even cases. In HOL, val is used for assigning values to names.
HOL supports pattern matching, so we can assign names to the 3-tuple of theorems returned by Hol_reln. (Note:
HOL uses ASCII symbols; ! is the universal quantifier ∀; ==> is logical implication⇒; and /\ is logical conjunction
∧.

v a l (e v e n r u l e s , e v e n i n d u c t i o n , e v e n c a s e s) =
H o l r e l n

‘ even 0 /\
(! n . even n ==> even (n + 2)) ‘ ;

The HOL code above produces three theorems, which are pretty-printed below, using HOL-generated LATEX macros.
HOL uses sequents to represent theorems. Sequents have the form Γ ` t, where t is a term in predicate logic and Γ is
a set of predicate logic terms. What Γ ` t states is when all the terms in Γ are true, then t must be true, too. If Γ is
empty, then we write ` t. In each of the following three theorems, Γ is empty.

[even_rules]
` even 0 ∧ ∀n. even n ⇒ even (n + 2)

[even_induction]
` ∀even′.

even′ 0 ∧ (∀n. even′ n ⇒ even′ (n + 2)) ⇒
∀a0. even a0 ⇒ even′ a0

[even_cases]
` ∀a0. even a0 ⇐⇒ (a0 = 0) ∨ ∃n. (a0 = n + 2) ∧ even n

The first theorem even rules is a commonly used description of even numbers: 0 is even, and if n is even then so is
n+2. The second theorem even induction is an induction principle using the fact that the inductive definition of even
is the smallest set of numbers satisfying the even rules. In other words, if a relation even′ satisfies the same rules as
even, then when even is true even′ must be true, too. Finally, the third theorem even cases states that if a0 is even, then
a0 is either 0 or there is an even number n such that a0 = n+2.

Returning to formalizing what is expressed graphically in Figure 3.1 by x−→, we define a labeled transition relation
Trans x, in words as follows.

1. For all next-state functions NS, inputs x, and states s, the predicate Trans x is true for states s and NS s x.

2. The set defining Trans x is the smallest set satisfying rule (1).

The following code snippet defines the transition relation Trans labeled with input x.

15

Figure 3.2 State Machine Behavior with Input and Output Streams

input stream output stream
State

Machine

v a l (T r a n s r u l e s , T r a n s i n d , T r a n s c a s e s) =
H o l r e l n
‘ !NS (s : ’ s t a t e) (x : ’ i n p u t) .

T rans x s ((NS: ’ s t a t e −> ’ i n p u t −> ’ s t a t e) s x) ‘

Hol_reln returns three theorems, Trans rules, Trans ind, and Trans cases shown below.

[Trans_rules]
` ∀NS s x. Trans x s (NS s x)

[Trans_ind]
` ∀Trans′.

(∀NS s x. Trans′ x s (NS s x)) ⇒
∀a0 a1 a2. Trans a0 a1 a2 ⇒ Trans′ a0 a1 a2

[Trans_cases]
` ∀a0 a1 a2. Trans a0 a1 a2 ⇐⇒ ∃NS. a2 = NS a1 a0

The first theorem Trans rules is a formalization of rule (1). The second theorem Trans ind is a consequence of Trans
x being the small set satisfying rule (1). Trans cases state that for all inputs a0 and states a1 and a2, there is always
some next-state function NS such that a2 is the next state of a1 for a given input a0.

While the above example is simple, it shows some of the advantages of higher-order logic in general, and computer-
assisted reasoning tools, such as HOL, in particular. The higher-order nature of the logic allows us to parameterize
over functions, e.g., the next-state function NS. HOL’s extensive library of theories and functions supports the creation
of logically sound extensions by engineers. ♦

Example 3.0.2
In this example we define another way of looking at the behavior of state machines. Figure 3.2 shows a state machine
with both an input stream and an output stream. Both streams are modeled by lists of inputs and outputs. The state
machine is described parametrically by a next-state function NS.

We can define a transition relation TR x similar to the relation Trans x in Example 3.0.1, except this relation is
over state-machine configurations that incorporate input streams, state, and output streams. We define a configuration
algebraic type in HOL using the code snippet below.

v a l =
H o l d a t a t y p e
‘ c o n f i g u r a t i o n =

CFG of ’ i n p u t l i s t => ’ s t a t e => ’ o u t p u t l i s t ‘

The HOL function Hol_datatype introduces new type definition into HOL. In this case, the datatype configuration
is defined as having a type constructor CFG and takes as inputs three arguments whose types are ′input list, ′state, and
′out put list. These arguments are polymorphic, as indicated by their respective type variables, and correspond to input
streams, states, and output streams. The pretty-printed result of executing the above code snippet is the introduction
of configuration as an algebraic type.

configuration = CFG (’input list) ’state (’output list)

16

Conveniently, HOL provides extensive support for reasoning about algebraic types. In particular, we use the HOL
function one_one_of to prove a theorem stating that two configurations are equal if and only if their components
are equal. The code snippet is shown below along with the pretty-printed theorem configuration_one_one.

v a l
c o n f i g u r a t i o n o n e o n e =
o n e o n e o f ‘ ‘ : (’ i n p u t , ’ s t a t e , ’ o u t p u t) c o n f i g u r a t i o n ‘ ‘

[configuration_one_one]
` ∀a0 a1 a2 a′0 a′1 a′2.

(CFG a0 a1 a2 = CFG a′0 a′1 a′2) ⇐⇒
(a0 = a′0) ∧ (a1 = a′1) ∧ (a2 = a′2)

With the algebraic type configuration defined in HOL, we define the relation TR x on a starting configuration whose
input stream is x::ins, state s, and output stream outs, with next-state transition function NS and output function Out.

1. For all next-state functions NS, output functions Out, inputs x, input streams ins, states s, and output streams
outs, the predicate TR x is true for configurations (CFG (x::ins) s outs) and (CFG ins (NS s x) (Out s x::outs)).

2. The set defining TR x is the smallest set satisfying rule (1).

The code snippet below defines the transition relation TR x on configurations with input x.

v a l (TR ru le s , TR ind , TR cases) =
H o l r e l n
‘ !NS Out (s : ’ s t a t e) (x : ’ i n p u t) (i n s : ’ i n p u t l i s t)

(o u t s : ’ o u t p u t l i s t) .
TR x

(CFG (x : : i n s) s o u t s)
(CFG i n s (NS s x) ((Out s x) : : o u t s)) ‘

Hol_reln returns three theorems, TR rules, TR ind, and TR cases shown below.

[TR_rules]
` ∀NS Out s x ins outs.

TR x (CFG (x::ins) s outs)
(CFG ins (NS s x) (Out s x::outs))

[TR_ind]
` ∀TR′.

(∀NS Out s x ins outs.
TR′ x (CFG (x::ins) s outs)
(CFG ins (NS s x) (Out s x::outs))) ⇒

∀a0 a1 a2. TR a0 a1 a2 ⇒ TR′ a0 a1 a2

[TR_cases]
` ∀a0 a1 a2.

TR a0 a1 a2 ⇐⇒
∃NS Out s ins outs.

(a1 = CFG (a0::ins) s outs) ∧
(a2 = CFG ins (NS s a0) (Out s a0::outs))

As with similar definitions, TR rules is the formalization of rule (1), TR ind is a result of TR x being the smallest set
satisfying rule (1), and TR cases relates the components of the second configuration to the components of the first
configuration in conjunction with the next state and output functions NS and Out, respectively. ♦

17

Example 3.0.3
With two definitions of transition relations on state machines, we can prove they are logically equivalent. In this
example, we give a brief illustration of goal-oriented proof in HOL. The theorem we prove as an illustration states that
if Trans x s (NS s x) is true, then so is TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs)). The theorem
below, Trans TR lemma states this fact.

[Trans_TR_lemma]
` Trans x s (NS s x) ⇒

TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs))

In HOL, goal-oriented proofs work by stating the desired goal with the same components as a sequent corresponding
to ultimate theorem: we provide a pair consisting of a list of assumptions and the conclusion. This is done by the HOL
function set_goal. Below, set_goal is applied to ([],‘‘(Trans (x:’input) (s:’state) (NS s
x)), i.e., the goal of proving Trans x implies TR x, with no assumptions. set_goal returns the proof state of
proving Trans x implies TR x with no assumptions.

- set_goal([],‘‘(Trans (x:’input) (s:’state) (NS s x)) ==>
(TR x (CFG (x::ins) s (outs:’output list))(CFG ins (NS s x) ((Out s x)::outs)))‘‘);
> val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:

Trans x s (NS s x) ==>
TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs))

Our next proof step is to simplify the assumptions as much as possible by moving all antecedents of implications into
the assumption list. This is done by executing STRIP_TAC.

- e(STRIP_TAC);
OK..
1 subgoal:
> val it =

TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs))

Trans x s (NS s x)
: proof

We recognize that the goal corresponds to the theorem TR rules. We supply TR rules to a high-level decision procedure
in HOL name PROVE_TAC. The results and completed proof are below.

- e(PROVE_TAC[TR_rules]);
OK..
Meson search level: ..

Goal proved.
[.] |- TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs))
> val it =

Initial goal proved.
|- Trans x s (NS s x) ==>

TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs))
: proof

In a similar fashion, we prove the converse of Trans_TR_lemma. The theorem is shown below as TR Trans lemma.

[TR_Trans_lemma]
` TR x (CFG (x::ins) s outs)

(CFG ins (NS s x) (Out s x::outs)) ⇒
Trans x s (NS s x)

With the two lemmas Trans TR lemma and TR Trans lemma, it is straightforward to prove that Trans and TR are
logically equivalent. The following code snippet illustrates how the HOL function TAC_PROOF is used to prove the
logical equivalence of Trans and TR.

18

v a l Trans Equiv TR =
TAC PROOF
(([] ,
‘ ‘ (TR (x : ’ i n p u t)

(CFG (x : : i n s) (s : ’ s t a t e) (o u t s : ’ o u t p u t l i s t))
(CFG i n s (NS s x) ((Out s x) : : o u t s))) =

(Trans (x : ’ i n p u t) (s : ’ s t a t e) (NS s x)) ‘ ‘) ,
PROVE TAC[TR Trans lemma , Trans TR lemma])

The results of the proof are shown below.

- val Trans_Equiv_TR =
TAC_PROOF(
([],
‘‘(TR (x:’input)

(CFG (x::ins) (s:’state)(outs:’output list))
(CFG ins (NS s x)((Out s x)::outs))) =
(Trans (x:’input) (s:’state) (NS s x))‘‘),

PROVE_TAC[TR_Trans_lemma,Trans_TR_lemma]);
Meson search level:
> val Trans_Equiv_TR =

|- TR x (CFG (x::ins) s outs) (CFG ins (NS s x) (Out s x::outs)) <=>
Trans x s (NS s x)

: thm

♦

The three examples in this section briefly illustrate how definitional extension and proofs are done in HOL. In the
remaining sections, we focus on the definitions and theorems, while omitting the details of how the proofs are done in
HOL.

Note: in everything that follows, all formulas starting with ` are theorems in HOL, typeset in LATEX by HOL,
and formally verified in HOL.

19

Chapter 4

The Access-Control Logic in HOL

The access-control logic described in Chapter 2 is implemented in HOL by (1) defining its syntax as an algebraic
type Form, (2) inductively defining the semantic function EM [[−]] in HOL over the type Form of access-control logic
formulas, and (3) proving theorems in HOL corresponding to inference rules of the C2 calculus.

The benefits of implementing the access-control logic in HOL include:

1. complete disclosure of all access-control logic and C2 calculus syntax and semantics,

2. formal machine-checked proofs of all properties of the access-control logic,

3. quantification over access-control logic formulas,

4. ability to combine the access-control logic with other logical descriptions, and

5. rapid and easy reproduction of all results by third parties.

Sections 4.1, 4.2, and 4.3 describe the syntax, semantics, and theorems corresponding to the inference rules of the
access-control logic and C2 calculus, respectively.

4.1 Syntax of the Access-Control Logic in HOL
The access-control logic is implemented as a conservative extension to the HOL system. What this means is that

the HOL logic is extended by defining the Form algebraic type corresponding to access-control logic formulas, the
algebraic type Princ corresponding to principal expressions, and the algebraic type Kripke corresponding to Kripke
structures. The semantics of Form and Princ are defined using Kripke and existing HOL operators. The properties of
the access-control logic are proved as theorems in HOL.

Figure 4.1 shows the HOL type Form corresponding to access-control logic formulas in HOL. Notice that the HOL
implementation uses notf, andf, orf, impf and eqf to represent negation, conjunction, disjunction, implication , and
equivalence in the access-control logic. Their semantics is defined in terms of sets of worlds from the universe of
worlds that is part of a Kripke structure M . This is different than the semantics of the corresponding operators in
propositional logic. The propositional logic operators are defined in terms of truth values instead of sets of worlds.

The type definition in Figure 4.1 is polymorphic, i.e., allows for type substitution into type variables. Recall that
type variables in HOL start with the back-quote symbol ’. For example, atomic propositions in the access-control
logic in HOL start with the type constructor prop and are applied to any type, as represented by ’aavar. For
example, prop command takes elements of the type command and maps them to propositions in the access-control
logic in HOL.

Figure 4.2 shows the syntax of principal expressions, integrity and security labels, and Kripke structures in HOL.
The HOL implementation parameterizes security labels, integrity labels, and their partial orders. As our thermostat
example does not rely upon security or integrity labels, we will not discuss their use further. Examples using security
and integrity labels are in [8].

The type constructor Name is polymorphic as seen in the type definition of Princ, where it is applied to the type
variable ’apn. The infix type constructor meet corresponds to & . The infix type constructor quoting corresponds
to | .

Figure 4.3 is a table showing how formulas in the C2 calculus are written in HOL implementation of the access-
control logic. The proposition 〈 jump〉 is written as prop jump in HOL. Negation of a C2 formula, such as ¬〈 jump〉
is written as notf (prop jump) in HOL. Alice says 〈 jump〉 is written as Name Alice says prop jump, etc.

20

Figure 4.1 Access-Control Logic Syntax in HOL
Form =

TT
| FF
| prop ’aavar
| notf ((’aavar, ’apn, ’il, ’sl) Form)
| (andf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (orf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (impf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (eqf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (says) (’apn Princ) ((’aavar, ’apn, ’il, ’sl) Form)
| (speaks_for) (’apn Princ) (’apn Princ)
| (controls) (’apn Princ) ((’aavar, ’apn, ’il, ’sl) Form)
| reps (’apn Princ) (’apn Princ)

((’aavar, ’apn, ’il, ’sl) Form)
| (domi) ((’apn, ’il) IntLevel) ((’apn, ’il) IntLevel)
| (eqi) ((’apn, ’il) IntLevel) ((’apn, ’il) IntLevel)
| (doms) ((’apn, ’sl) SecLevel) ((’apn, ’sl) SecLevel)
| (eqs) ((’apn, ’sl) SecLevel) ((’apn, ’sl) SecLevel)
| (eqn) num num
| (lte) num num
| (lt) num num

4.2 Semantics of the Access-Control Logic in HOL
With the introduction of logical expressions, principal expressions, and Kripke structures as datatypes into HOL, we
can define the HOL function Efn corresponding to the function EM [[−]] in Figure 2.2, which defines the Kripke
semantics of the access-control logic. The definition of Efn is in Section B. The definitions of EM [[−]] and Efn
closely correspond to one another syntactically.

Of course, the question is how do we know that the implementation in HOL corresponds to the logic described in
Figure 2.2 and as described in [8]? The answer is if we can prove theorems in HOL about the HOL implementation
that correspond to the inference rules in [8], then we are satisfied.

4.3 C2 Inference Rules in HOL
Recall in Section 2.3 that M |= ϕ denoted EM [[ϕ]] =W , i.e., ϕ is true for all worlds in M . Inference rules in the

C2 calculus are sound because whenever M satisfies all the hypotheses H1 · · ·Hk, then M satisfies conclusion C as
well.

In our HOL implementation, we say Kripke structure M with partial orders Oi and Os on integrity and security
labels, respectively, satisfies an access-control logic formula f whenever the HOL semantic function Efn, whose
definition appears in Section B, applied to M, Oi, Os, and f equals the universe of worlds in M. The definition of sat
in HOL is as follows.

[sat_def]
` ∀M Oi Os f. (M,Oi,Os) sat f ⇐⇒ (Efn Oi Os M f = U(:’world))

An inference rule in the C2 calculus of the form

H1 · · ·Hk

C

21

Figure 4.2 Syntax of Principal Expressions, Integrity and Security Labels, and Kripke Structures in HOL
Princ =

Name ’apn
| (meet) (’apn Princ) (’apn Princ)
| (quoting) (’apn Princ) (’apn Princ) ;

IntLevel = iLab ’il | il ’apn ;

SecLevel = sLab ’sl | sl ’apn

Kripke =
KS (’aavar -> ’aaworld -> bool)

(’apn -> ’aaworld -> ’aaworld -> bool) (’apn -> ’il)
(’apn -> ’sl)

Figure 4.3 C2 Formulas and Their Representation in HOL

C2 Formula HOL Syntax
〈 jump〉 prop jump
¬〈 jump〉 notf (prop jump)
〈run〉∧ 〈 jump〉 prop run andf prop jump
〈run〉∨ 〈stop〉 prop run orf prop stop
〈run〉 ⊃ 〈 jump〉 prop run impf prop jump
〈walk〉 ≡ 〈stop〉 prop walk eqf prop stop
Alice says 〈 jump〉 Name Alice says prop jump
Alice & Bob says 〈stop〉 Name Alice meet Name Bob says prop stop
Bob |Carol says 〈run〉 Name Bob quoting Name Carol says prop run
Bob controls 〈walk〉 Name Bob controls prop walk
Bob reps Alice on 〈 jump〉 reps (Name Bob) (Name Alice) (prop jump)
Carol⇒ Bob Name Carol speaks for Name Bob

has a corresponding theorem in HOL

` ∀M Oi Os.(M,Oi,Os) sat H1⇒ ··· ⇒ (M,Oi,Os) sat Hk⇒ (M,Oi,Os) sat C,

where⇒ corresponds to logical implication in HOL. Figures 4.4 and 4.5 show the HOL theorems corresponding to
the C2 inference rules in Figure 2.3.

22

Figure 4.4 HOL Theorems Corresponding to C2 Calculus Inference Rules (1 of 2)
[Controls_Eq]

` ∀M Oi Os P f.
(M,Oi,Os) sat P controls f ⇐⇒ (M,Oi,Os) sat P says f impf f

[Reps_Eq]

` ∀M Oi Os P Q f.
(M,Oi,Os) sat reps P Q f ⇐⇒
(M,Oi,Os) sat P quoting Q says f impf Q says f

[Modus Ponens]

` ∀M Oi Os f1 f2.
(M,Oi,Os) sat f1 ⇒
(M,Oi,Os) sat f1 impf f2 ⇒
(M,Oi,Os) sat f2

[Says]

` ∀M Oi Os P f. (M,Oi,Os) sat f ⇒ (M,Oi,Os) sat P says f

[Controls]

` ∀M Oi Os P f.
(M,Oi,Os) sat P says f ⇒
(M,Oi,Os) sat P controls f ⇒
(M,Oi,Os) sat f

[Derived_Speaks_For]

` ∀M Oi Os P Q f.
(M,Oi,Os) sat P speaks_for Q ⇒
(M,Oi,Os) sat P says f ⇒
(M,Oi,Os) sat Q says f

23

Figure 4.5 HOL Theorems Corresponding to C2 Calculus Inference Rules (2 of 2)
[Reps]

` ∀M Oi Os P Q f.
(M,Oi,Os) sat reps P Q f ⇒
(M,Oi,Os) sat P quoting Q says f ⇒
(M,Oi,Os) sat Q controls f ⇒
(M,Oi,Os) sat f

[And_Says_Eq]

` (M,Oi,Os) sat P meet Q says f ⇐⇒
(M,Oi,Os) sat P says f andf Q says f

[Quoting_Eq]

` ∀M Oi Os P Q f.
(M,Oi,Os) sat P quoting Q says f ⇐⇒
(M,Oi,Os) sat P says Q says f

[Idemp_Speaks_For]

` ∀M Oi Os P. (M,Oi,Os) sat P speaks_for P

[Mono_Speaks_For]

` ∀M Oi Os P P′ Q Q′.
(M,Oi,Os) sat P speaks_for P′ ⇒
(M,Oi,Os) sat Q speaks_for Q′ ⇒
(M,Oi,Os) sat P quoting Q speaks_for P′ quoting Q′

24

Chapter 5

Cryptographic Components and Their Models in
Higher Order Logic

Cryptographic operations are an integral part of protecting integrity and confidentiality. In this section, we provide
algebraic models in higher-order logic and HOL of idealized cryptographic operations. Missing is any notion of
cryptographic strength and a particular algorithm’s ability to withstand cryptanalysis.

Our descriptions of ideal cryptographic behavior is similar to Conway’s description of ideal transistors as switches
[9]. Her design approach focused on how transistors are used and the accompanying expectations as a binary device,
as opposed to giving details of its amplification performance as an analog device.

In what follows, the models of crypto operations, combined with the access-control logic, enable us to reason
about systems using cryptographic-based authentication and authorization. In the following sections on symmetric
key and asymmetric key encryption and decryption, cryptographic hash functions, and digital signatures, we describe
the operation, how it is used, and the ideal behavior we model in HOL.

5.1 Symmetric-Key Cryptography

Figure 5.1 is a schematic of symmetric key encryption and decryption. Suppose Bob wishes to send a message to
Alice that only he and Alice can read. Also suppose that Bob and Alice share the same secret key, which is also known
as a symmetric key. Here are the steps that Bob and Alice take to communicate confidentially.

1. Bob encrypts his message in plaintext with the secret key k he shares with Alice. He forwards to encrypted
message, i.e., the ciphertext, to Alice.

2. Alice uses symmetric key k to decrypt the ciphertext to retrieve the plaintext message.

Idealized Behavior

Symmetric-key cryptography is used with the following expectations: (1) the same key is the only means to decrypt
what is encrypted, (2) if something useful and recognizable is decrypted, then it must mean that the decrypted text
and the decryption key are identical to the original text and encryption key, and (3) using anything other than the
original encryption key to decrypt will result in an unusable result. We capture these expectations semi-formally by
the following statements.

1. Whatever is encrypted with key k is retrieved unchanged by decrypting with the same key k.

2. If key k1 encrypted any plaintext, and key k2 decrypted the resulting ciphertext and retrieved the original text,
then k1 = k2.

3. If plaintext is encrypted with key k1, decrypted with key k2, and nothing useful results, then k1 6= k2.

4. If nothing useful is encrypted using any key, then nothing useful is decrypted using any key.

Modeling Idealized Behavior in HOL

25

Figure 5.1 Symmetric-Key Encryption and Decryption

Plain text Message from Bob Encryption

Decryption

Secret Key (shared by Alice and Bob)

Ciphertext Message

Secret Key (shared by Alice and Bob)

Adding ”Nothing Useful” as a Value One aspect we must model is the notion of “nothing useful” as a value or
result. To do this in a general fashion, we use option theory in HOL. Figure 5.2 shows the type definition of option
and the properties of option types in HOL in the theorem option CLAUSES.

The option type is polymorphic. option types are created from other types using the type constructor SOME. For
example, when SOME is applied to the natural number 1, i.e., SOME 1, the resulting value is of type num option. The
num option type has all the values of SOME n, where n is a natural number in HOL, with one added value: NONE. We
use NONE when we want to return a value other than a natural number, e.g., in the case where we return a result of
dividing by zero.

In the case of modeling encryption and decryption, we use option types to add the value NONE to whatever we are
encrypting or decrypting. Doing so allows us to handle cases such as what value to return if the wrong key is used to
decrypt an encrypted message.

Finally, the accessor function THE is used to retrieve the value to which SOME is applied. For example, T HE(SOME x)=
x, as shown in option CLAUSES.

Symmetric Keys, Encryption, Decryption, and their Properties Figure 5.3 shows the definitions and properties
of symmetric-key encryption and decryption. The following is a list of key definitions and properties.

• Symmetric keys are modeled by the algebraic type symKey. The type constructor is sym. For example, sym
1234 is a symmetric key. Abstractly, sym 1234 is the symmetric key which is identified by number 1234.

• Two symmetric keys are identical if they have the same number to which sym is applied. This is shown in
theorem symKey one one.

• Symmetrically encrypted messages are modeled by the algebraic type symMsg, whose type constructor is Es.
Symmetrically encrypted messages have two arguments: (1) a symKey, and (2) a ’message option. For
example, Es (sym 1234) (SOME "This is a string") is a symmetrically encrypted message us-
ing: (1) the symmetric key sym 1234, and (2) the string option value SOME "This is a string".
Abstractly, the type constructor Es stands for any symmetric-key encryption algorithm, e.g., DES or AES.

• Two symMsg values are identical if their corresponding components are identical. This is shown in theorem
symMsg one one.

• Symmetric-key decryption of symMsgs is defined by deciphS def. If the same symKey is used to decipher an
encrypted SOME x, then SOME x is returned. Otherwise, NONE is returned. If nothing useful is encrypted, then
nothing useful is decrypted. Abstractly, deciphS represents any symmetric key decryption algorithm.

26

Figure 5.2 Option Theory in HOL
option = NONE | SOME ’a

[option_CLAUSES]

` (∀x y. (SOME x = SOME y) ⇐⇒ (x = y)) ∧
(∀x. THE (SOME x) = x) ∧ (∀x. NONE 6= SOME x) ∧
(∀x. SOME x 6= NONE) ∧ (∀x. IS_SOME (SOME x) ⇐⇒ T) ∧
(IS_SOME NONE ⇐⇒ F) ∧ (∀x. IS_NONE x ⇐⇒ (x = NONE)) ∧
(∀x. ¬IS_SOME x ⇐⇒ (x = NONE)) ∧
(∀x. IS_SOME x ⇒ (SOME (THE x) = x)) ∧
(∀x. option_CASE x NONE SOME = x) ∧
(∀x. option_CASE x x SOME = x) ∧
(∀x. IS_NONE x ⇒ (option_CASE x e f = e)) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e f = f (THE x))) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e SOME = x)) ∧
(∀v f. option_CASE NONE v f = v) ∧
(∀x v f. option_CASE (SOME x) v f = f x) ∧
(∀ f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
(∀ f. OPTION_MAP f NONE = NONE) ∧ (OPTION_JOIN NONE = NONE) ∧
∀x. OPTION_JOIN (SOME x) = x

• Finally, deciphS clauses is the HOL theorem that shows our type definitions for keys and encryption, coupled
with our definition of decryption, has the properties we expect: (1) the same key when used for encryption and
decryption returns the original message, (2) if the original message was retrieved, identical keys were used, (3)
if a different key is used to decrypt ciphertext, then nothing useful is returned, and (4) garbage in and garbage
out holds true.

5.2 Cryptographic Hash Functions
Cryptographic hash functions are used to map inputs of any size into a fixed number of bits. Cryptographic

hash functions are one-way functions, (1) the output is easy to compute from the input, and (2) it is computationally
infeasible to determine an input when given only a hash value. Hash values are also known as digests.

Figure 5.4 shows the type definition of digest and their properties. The following describes the type definition and
its properties.

• Digests or hashes are modeled by the algebraic type digest. The type constructor is hash and is meant to
represent any hash algorithm, e.g., SHA1 and SHA2. Notice that the hash is applied to polymorphic arguments
of type ’message option, e.g., hash (SOME "A string message").

• The key property of ideal digests is they are one-to-one, as shown by the theorem digest one one. In reality,
hashes cannot be one-to-one due to their fixed-length output. Modeling digests in this way is analogous to
abstracting the electrical behavior of transistors as amplifiers away and idealizing them as perfect switches.

5.3 Asymmetric-Key Cryptography
Figure 5.5 is a schematic of asymmetric key encryption and decryption. The asymmetric nature of asymmetric

key, or public-key cryptography, is two different keys are used instead of the same key. One key, known as a public
key, may be freely disclosed. The other key, known as a private key, must be known only by one principal.

Suppose Alice wishes to send a message to Bob that only Bob can read. Alice encrypts the message to Bob using
his public key KBob. Only Bob, who alone possesses the private key K−1

Bob, is able to decrypt the message encrypted
with his public key KBob.

27

Figure 5.3 Definitions and Properties of Symmetric Encryption and Decryption
symKey = sym num

[symKey_one_one]

` ∀a a′. (sym a = sym a′) ⇐⇒ (a = a′)

symMsg = Es symKey (’message option)

[symMsg_one_one]

` ∀a0 a1 a′0 a′1.
(Es a0 a1 = Es a′0 a′1) ⇐⇒ (a0 = a′0) ∧ (a1 = a′1)

[deciphS_def]

` (deciphS k1 (Es k2 (SOME x)) =
if k1 = k2 then SOME x else NONE) ∧

(deciphS k1 (Es k2 NONE) = NONE)

[deciphS_clauses]

` (∀k text. deciphS k (Es k (SOME text)) = SOME text) ∧
(∀k1 k2 text.

(deciphS k1 (Es k2 (SOME text)) = SOME text) ⇐⇒
(k1 = k2)) ∧

(∀k1 k2 text.
(deciphS k1 (Es k2 (SOME text)) = NONE) ⇐⇒ k1 6= k2) ∧

∀k1 k2. deciphS k1 (Es k2 NONE) = NONE

[deciphS_one_one]

` (∀k1 k2 text1 text2.
(deciphS k1 (Es k2 (SOME text2)) = SOME text1) ⇐⇒
(k1 = k2) ∧ (text1 = text2)) ∧

∀enMsg text key.
(deciphS key enMsg = SOME text) ⇐⇒
(enMsg = Es key (SOME text))

Asymmetric-key cryptography is used with the following expectations: (1) plaintext that is encrypted with a private
key and can be retrieved only with the corresponding public key, (2) plaintext that is encrypted with a public key can
be retrieved only with the corresponding private key, (3) if plaintext was retrieved that was encrypted with a private
key, then the corresponding public key was was used to decrypt the ciphertext, (4) if plaintext was retrieved that was
encrypted with a public key, then the corresponding private key was used to decrypt the ciphertext, and (5) nothing
useful results if decryption uses anything but the corresponding public or private key used in encryption.

Figure 5.6 shows the type definitions for asymmetric keys pKey, i.e., public and private keys, and asymmetrically
encrypted messages asymMsg. Figure 5.6 also shows properties of pKey and asymMsg.

• The type pKey has two forms, pubK P and privK P, public and private, respectively. Asymmetric keys are
polymorphic and intended to be associated with principals P with variable type ’princ.

• The private and public keys of any principal are not the same.

• Public and private keys are the same if they have the same parameters.

• The type asymMsg represents asymmetrically encrypted messages. The parameters of type constructor Ea are a
pKey and a ’message option. Abstractly, the type constructor Ea stands for any asymmetric-key algorithm, e.g.,
RSA.

28

Figure 5.4 Definition of Digests and their Properties
digest = hash (’message option)

[digest_one_one]

` ∀a a′. (hash a = hash a′) ⇐⇒ (a = a′)

Figure 5.5 Asymmetric-Key Encryption and Decryption

Alice's message to Bob Encryption Encrypted Message

Decryption

Bob’s Public Key
 (available to all)

Bob’s Private Key
(known only by Bob)

• Two asymMsgs are the same if they have the same pKey and ’message option values.

Figure 5.7 shows the definition and properties of deciphP, which models the decryption of asymmetrically en-
crypted messages. Similar to symmetric-key encryption, to retrieve the plaintext SOME x requires use of the correct
key, in this case privK P if the message was encrypted using pubK P, or pubK P if the message was encrypted with
privK P. As before, garbage in produces garbage out.

The properties of deciphP are shown in Figures 5.7 and 5.8 by theorems deciphP clauses and deciphP one -
one. Together, they show the circumstances under which the original plaintext is decrypted, when nothing useful is
decrypted, and the conditions that ensure that the expected keys and plaintext messages were in fact, used.

5.4 Digital Signatures
Digitally signed messages are often a combination of cryptographic hashes of messages encrypted using the private

key of the sender. This is shown in Figure 5.9, which depicts signature generation as the following sequence of
operations:

1. A message is hashed, then

2. the message hash is encrypted using the private key of the sender.

The intuition behind signatures is this: (1) the cryptographic hash is a unique pointer to the message (and potentially
much smaller than the message), and (2) encrypting using the sender’s private key (which is reversible by the sender’s
public key) is a unique pointer to the sender.

Figure 5.10 shows how decrypted messages are checked for integrity using digital signatures. The top-most se-
quence from left to right shows how the decrypted hash value is retrieved from the received digital signature. The
digital signature is decrypted using the sender’s public key to retrieve the hash or digest of the original message. The
retrieved hash is compared to the hash of the decrypted message. If the two hash values are the same, then the received
message is judged to have arrived unchanged from the original.

29

Figure 5.6 Definitions and Properties of Asymmetric Keys and Messages
pKey = pubK ’princ | privK ’princ

[pKey_distinct_clauses]

` (∀a′ a. pubK a 6= privK a′) ∧ ∀a′ a. privK a′ 6= pubK a

[pKey_one_one]

` (∀a a′. (pubK a = pubK a′) ⇐⇒ (a = a′)) ∧
∀a a′. (privK a = privK a′) ⇐⇒ (a = a′)

asymMsg = Ea (’princ pKey) (’message option)

[asymMsg_one_one]

` ∀a0 a1 a′0 a′1.
(Ea a0 a1 = Ea a′0 a′1) ⇐⇒ (a0 = a′0) ∧ (a1 = a′1)

Figure 5.11 shows the function definitions in HOL of sign and signVerify. sign takes as inputs a pKey and a digest
and returns an asymmetrically encrypted digest using the asymmetric pKey. signVerify takes as input a pKey, digital
signature, and a received message and compares the decrypted hash in the signature with the hash of the received
message. The properties of signVerify and sign are in theorems signVerifyOK and signVerify one one.

• signVerify is always true for signatures generated as shown in Figure 5.9.

• signVerify and sign combine to have the desired properties that the plaintext must match and the corresponding
keys must match.

30

Figure 5.7 Definitions and Properties of Asymmetric Decryption
[deciphP_def]

` (deciphP key (Ea (privK P) (SOME x)) =
if key = pubK P then SOME x else NONE) ∧

(deciphP key (Ea (pubK P) (SOME x)) =
if key = privK P then SOME x else NONE) ∧

(deciphP k1 (Ea k2 NONE) = NONE)

[deciphP_clauses]

` (∀P text.
(deciphP (pubK P) (Ea (privK P) (SOME text)) =
SOME text) ∧

(deciphP (privK P) (Ea (pubK P) (SOME text)) =
SOME text)) ∧

(∀k P text.
(deciphP k (Ea (privK P) (SOME text)) = SOME text) ⇐⇒
(k = pubK P)) ∧

(∀k P text.
(deciphP k (Ea (pubK P) (SOME text)) = SOME text) ⇐⇒
(k = privK P)) ∧

(∀x k2 k1 P2 P1.
(deciphP (pubK P1) (Ea (pubK P2) (SOME x)) = NONE) ∧
(deciphP k1 (Ea k2 NONE) = NONE)) ∧

∀x P2 P1. deciphP (privK P1) (Ea (privK P2) (SOME x)) = NONE

Figure 5.8 One-to-One Properties of Asymmetric Decryption
[deciphP_one_one]

` (∀P1 P2 text1 text2.
(deciphP (pubK P1) (Ea (privK P2) (SOME text2)) =
SOME text1) ⇐⇒ (P1 = P2) ∧ (text1 = text2)) ∧

(∀P1 P2 text1 text2.
(deciphP (privK P1) (Ea (pubK P2) (SOME text2)) =
SOME text1) ⇐⇒ (P1 = P2) ∧ (text1 = text2)) ∧

(∀p c P msg.
(deciphP (pubK P) (Ea p c) = SOME msg) ⇐⇒
(p = privK P) ∧ (c = SOME msg)) ∧

(∀enMsg P msg.
(deciphP (pubK P) enMsg = SOME msg) ⇐⇒
(enMsg = Ea (privK P) (SOME msg))) ∧

(∀p c P msg.
(deciphP (privK P) (Ea p c) = SOME msg) ⇐⇒
(p = pubK P) ∧ (c = SOME msg)) ∧

∀enMsg P msg.
(deciphP (privK P) enMsg = SOME msg) ⇐⇒
(enMsg = Ea (pubK P) (SOME msg))

31

Figure 5.9 Digital Signature Generation

Hash
Function

EncryptionMessage Signature

Private Key

Figure 5.10 Digital Signature Verification

Received
Signature

Decryption

Sender’s
Public Key

Decrypted
Hash Value

Received
Message

Hash Function
Computed
Hash Value

Equal?
Message

Intact

Message
Corrupted

Yes

No

Figure 5.11 Digital Signature Generation, Verification, and Their Properties
[sign_def]

` ∀pubKey dgst. sign pubKey dgst = Ea pubKey (SOME dgst)

[signVerify_def]

` ∀pubKey signature msgContents.
signVerify pubKey signature msgContents ⇐⇒
(SOME (hash msgContents) = deciphP pubKey signature)

[signVerifyOK]

` ∀P msg.
signVerify (pubK P) (sign (privK P) (hash (SOME msg)))
(SOME msg)

[signVerify_one_one]

` (∀P m1 m2.
signVerify (pubK P) (Ea (privK P) (SOME (hash (SOME m1))))
(SOME m2) ⇐⇒ (m1 = m2)) ∧

(∀signature P text.
signVerify (pubK P) signature (SOME text) ⇐⇒
(signature = sign (privK P) (hash (SOME text)))) ∧

∀ text2 text1 P2 P1.
signVerify (pubK P1) (sign (privK P2) (hash (SOME text2)))
(SOME text1) ⇐⇒ (P1 = P2) ∧ (text1 = text2)

32

Chapter 6

Adding Security to State Machines

In this section, we use the infrastructure we have described in previous sections to add authentication and authorization
to the description of state machines. Traditionally, this authentication and authorization was a function of virtual
machine monitors (VMMs) or hypervisors. Our approach is to combine VMM functions into the description of state
machines. We call these machines secure state-machines (SSMs).

At this point, we now have the following logical infrastructure:

1. An access-control logic and a C2 calculus in the form of inference rules implemented and verified as sound
within the HOL theorem prover.

2. Algebraic models in HOL of cryptographic operations including symmetric and asymmetric encryption and
decryption, cryptographic hashes, and digital signature generation and verification.

3. Parameterized state machines of arbitrary size described in HOL using labeled transition relations defined in-
ductively in HOL.

4. Definitions and access-control logic interpretations of thermostat messages and certificates implemented in
HOL.

Using the above infrastructure, we combine the above elements to extend the parameterized state-machine description
in Chapter 3 to account for authentication and authorization. We do so at two levels.

1. State-machine transition behavior at a purely logical level where inputs and the security context are described
in the access-control logic, and

2. State-machine transition behavior at a concrete level using (1) message and certificate data structures, and (2)
interpretations in the access-control logic of messages and certificates.

There are many policies that define secure behavior, e.g., the classic military confidentiality policies of Bell and
La Padula [6] and [5], the integrity policies of Biba [7], and role-based access control [10] and [13]. For illustrative
purposes, the security policy we use is based on Popek and Goldberg’s virtualization policies [12]. We chose virtu-
alization because it lends itself to state-machine descriptions and it supports specifications where authorization and
authentication are parameters.

The high-level policy followed by secure state-machines (SSMs) is as follows.

1. If an input to the machine fails to pass the supplied integrity check used by the machine, the input is discarded.

2. Inputs that are authenticated and deemed intact, are checked for authorization within the context of a state-
interpretation function and list of certificates. An example of a security-interpretation of a state is when a mode
bit is used to indicate if the machine is operating in privileged mode or user mode. An example of a certificate
used for authorization is a ticket granting permission to access or use an object or service.

(a) Authorized commands are executed.

(b) Unauthorized commands are trapped.

3. Within the context of a specific application, commands are divided into two groups:

(a) Security-sensitive commands, i.e., commands that if misused, compromise the integrity or confidentiality
of operations, e.g., compromising process isolation, or

33

Figure 6.1 Definitions and Properties of Instruction and Transition Types
inst = CMD ’command | TRAP

[inst_distinct_clauses]

` (∀a. CMD a 6= TRAP) ∧ ∀a. TRAP 6= CMD a

trType = discard | trap ’inst | exec ’inst

[trType_distinct_clauses]

` (∀a. discard 6= trap a) ∧ (∀a. discard 6= exec a) ∧
(∀a′ a. trap a 6= exec a′) ∧ (∀a. trap a 6= discard) ∧
(∀a. exec a 6= discard) ∧ ∀a′ a. exec a′ 6= trap a

(b) Innocuous commands, i.e., commands that do not compromise integrity or confidentiality.

4. In keeping with the requirements for virtualizability as defined in [12], all security-sensitive commands are
privileged commands, i.e., executable only by authorized principals. Attempts by unauthorized principals to
execute privileged commands are trapped.

In keeping with making our SSM theories as reusable as possible, we fully parameterize them in terms of:

• authentication functions,

• authorization context given by lists of certificates and credentials, which have meaning in the access-control
logic,

• functions for defining the meaning of inputs, certificates, and states, in the access-control logic,

• next-state functions,

• output functions, and

• type variables for inputs, outputs, and states in support of polymorphism.

We develop two levels of SSM description:

1. a high-level logical description relying on access-control logic formulas for inputs and certificates, and

2. a lower-level description using type variables and interpretation functions for inputs, states, and certificates.

This lower-level description is a refinement of the high-level description of behavior.

6.1 Instructions and Transition Types
Figure 6.1 shows the definition and properties of SSM instructions inst and state-transition types trType. The

inst type is polymorphic, and is constructed with the type variable ’command and the type constructor CMD. One
additional instruction, TRAP, is added to all the commands that are in ’command. The theorems inst distinct clauses
and trType distinct clauses are the usual theorems stating that each form of inst or trType is distinct from the other.

There are two points regarding inst.

1. The purpose of inst is to add TRAP to the to the set of commands. Doing so facilitates writing policies in the
access-control logic specifying when TRAPs should occur.

2. We can achieve the same effect by using option types, i.e., using SOME and NONE. To enhance readability, we
use CMD and TRAP instead.

34

Figure 6.2 Definition and Properties of High-Level SSM Configurations
configuration =

CFG ((’command inst, ’principal, ’d, ’e) Form -> bool)
(’state -> (’command inst, ’principal, ’d, ’e) Form)
((’command inst, ’principal, ’d, ’e) Form list)
((’command inst, ’principal, ’d, ’e) Form list) ’state
(’output list)

[configuration_11]

` ∀a0 a1 a2 a3 a4 a5 a′0 a′1 a′2 a′3 a′4 a′5.
(CFG a0 a1 a2 a3 a4 a5 = CFG a′0 a′1 a′2 a′3 a′4 a′5) ⇐⇒
(a0 = a′0) ∧ (a1 = a′1) ∧ (a2 = a′2) ∧ (a3 = a′3) ∧
(a4 = a′4) ∧ (a5 = a′5)

Figure 6.3 satList Definition and Properties
[satList_def]

` ∀M Oi Os formList.
(M,Oi,Os) satList formList ⇐⇒
FOLDR (λx y. x ∧ y) T (MAP (λ f. (M,Oi,Os) sat f) formList)

[satList_nil]

` (M,Oi,Os) satList []

[satList_CONS]

` ∀h t M Oi Os.
(M,Oi,Os) satList (h::t) ⇐⇒
(M,Oi,Os) sat h ∧ (M,Oi,Os) satList t

[satList_conj]

` ∀ l1 l2 M Oi Os.
(M,Oi,Os) satList l1 ∧ (M,Oi,Os) satList l2 ⇐⇒
(M,Oi,Os) satList (l1 ++ l2)

6.2 High-Level Secure State-Machine Description

Configurations Defined Figure 6.2 shows the definition of high-level SSM configurations and their properties.
Configurations have six components.

1. An authentication function with type (’command inst, ’principal, ’d, ’e)Form -> bool that
returns true or false when applied to inputs expressed as access-control logic formulas. This function determines
whether or not commands originate from known and approved sources.

2. A state interpretation function with type ’state -> (’command inst, ’principal, ’d, ’e)Form
that maps a state into an access-control logic formula. The interpretation function and state are part of the secu-
rity context informing the decision on whether or not an authenticated request is authorized.

3. A list of access-control logic formulas (’command inst, ’principal, ’d, ’e)Form list that
represent the security context, with security interpretation of the current state, in which authenticated requests
are authorized or not. The list elements correspond to the meaning of certification, polices, trust assumptions,
and authorizations in the access-control logic.

35

Figure 6.4 Definition of Configuration Interpretation Function
[CFGInterpret_def]

` CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp context (x::ins) state

outStream) ⇐⇒
(M,Oi,Os) satList context ∧ (M,Oi,Os) sat x ∧
(M,Oi,Os) sat stateInterp state

Figure 6.5 Discard Command Rule for Transition Relation TR
[TR_discard_cmd_rule]

` TR (M,Oi,Os) discard
(CFG inputTest stateInterp certs (x::ins) s outs)
(CFG inputTest stateInterp certs ins (NS s discard)

(Out s discard::outs)) ⇐⇒ ¬inputTest x

4. An input stream of access-control logic formulas (’command inst, ’principal, ’d, ’e)Form
list.

5. The current state ’state.

6. An output stream ’output list.

The theorem configuration 11 is the typical property stating that two configurations are identical if and only if all their
components are identical.

Semantics of Lists of Access-Control Logic Formulas Defined To assist in the interpretation of configurations,
we define the function satList, whose purpose is to give meaning to a list of access-control logic formulas, e.g.,
[f1; f2; · · · ; fn]. Figure 6.3 defines satList and its properties. The net effect of the satList definition and theorems
is satList applied to a Kripke structure M, partial orders Oi and Os, and a list of access-control logic formulas
[f1; f2; · · · ; fn], is that satList is the and-reduction of (M,Oi,Os) sat mapped over each formula fi. For example,

(M,Oi,Os) satList [f1; f2; · · · ; fn] = (M,Oi,Os) sat f1 ∧·· · ∧ (M,Oi,Os) sat fn

Interpretation of Configurations Defined Figure 6.4 shows the definition CFGInterpret def, which defines the
meaning of configurations in the access-control logic. Simply put, the security interpretation of a configuration is the
conjunction of formulas (M,Oi,Os) sat fi, where fi corresponds to the formulas in the list context, the meaning of
input x, and the interpretation of state.

Configuration Transition Relation TR Defined and Its Properties We define inductively the transition relation
TR on configurations using the same techniques as shown in Example 3.0.2. This time, we account for the security
interpretation of configurations.

Appendix C.1 gives the HOL source code for defining TR. Appendix C.2 shows the three defining properties of
TR in HOL resulting from the inductive definition. These properties are TR rules, TR ind, and TR cases, which give
the transition rules, induction property, and cases theorem, respectively.

Looking at TR rules, we see there are three clauses, one each for the three trTypes labeling the transition relation
TR (M, Oi, Os):

1. TR (M, Oi, Os) (exec (CMD cmd)): the rule specifying when a command cmd is executed. The conditions are:

(a) the input P says prop (CMD cmd) must be authenticated by inputTest, and

(b) the security interpretation of the current configuration is given by CFGInterpret.

36

Figure 6.6 Execute Command Rule for Transition Relation TR
[TR_exec_cmd_rule]

` ∀ inputTest certs stateInterp P cmd ins s outs.
(∀M Oi Os.

CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs) ⇒
(M,Oi,Os) sat prop (CMD cmd)) ⇒

∀NS Out M Oi Os.
TR (M,Oi,Os) (exec (CMD cmd))

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs)

(CFG inputTest stateInterp certs ins
(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs)) ⇐⇒

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ∧

(M,Oi,Os) sat prop (CMD cmd)

2. TR (M, Oi, Os) (trap (CMD cmd)): the rule specifying when a command cmd is trapped. The conditions are:

(a) the input P says prop (CMD cmd) must be authenticated by inputTest, and

(b) the security interpretation of the current configuration is given by CFGInterpret.

3. TR (M, Oi, Os) discard: the rule specifying when an input x is discarded. The rule states when x fails to be
authenticated by inputTest, x is discarded from the input stream.

Based on the definitions of TR, satList, and CFGInterpret, and their properties, we can prove three equality prop-
erties related to each of the transition types trType. The following three equality rules are parameterizable, convenient,
and essential for easily certifying the security properties of devices such as the networked thermostat. The equality
theorems are:

1. TR discard cmd rule as shown in Figure 6.5. It states that a discard transition occurs for an input x if and only
if x fails to be authenticated, i.e., ¬inputTest x is true.

2. TR exec cmd rule as shown in Figure 6.6. It states that if (M, Oi, Os) sat prop (CMD cmd) is justi-
fied, i.e., implied by the security interpretation of the current configuration, as specified by CFGInterpret, then
cmd is executed if and only if (a) the input is authenticated, (b) CFGInterpret is the security interpretation, and
(c) (M, Oi, Os) sat prop (CMD cmd) is true.

3. TR trap cmd rule as shown in Figure 6.7. It states that if (M, Oi, Os) sat prop TRAP is justified, i.e.,
implied by the security interpretation of the current configuration, as specified by CFGInterpret, then cmd is
trapped if and only if (a) the input is authenticated, (b) CFGInterpret is the security interpretation, and (c) (M,
Oi, Os) sat prop TRAP is true.

Note that in the above three theorems, the following functions and types are parameterized, making the theorems
applicable to state machines in general using the concepts of discarding, trapping, and executing commands. The
specific parameters are:

1. inputTest: the authentication function,

2. stateInterp: the state interpretation function,

3. certs: the credentials, trust assumptions, delegations, and authorizations informing authorization decisions,

37

Figure 6.7 Trap Command Rule for Transition Relation TR
[TR_trap_cmd_rule]

` ∀ inputTest stateInterp certs P cmd ins s outs.
(∀M Oi Os.

CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs) ⇒
(M,Oi,Os) sat prop TRAP) ⇒

∀NS Out M Oi Os.
TR (M,Oi,Os) (trap (CMD cmd))

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs)

(CFG inputTest stateInterp certs ins
(NS s (trap (CMD cmd)))
(Out s (trap (CMD cmd))::outs)) ⇐⇒

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ∧

(M,Oi,Os) sat prop TRAP

4. commands: commands are polymorphic,

5. states: states are polymorphic,

6. outputs: outputs are polymorphic,

7. NS: the next-state function, and

8. Out: the output function.

The three theorems in Figures 6.5, 6.6, and 6.7, provide a parameterized framework at the logic design level of
state machines. We use this framework in specific applications, such as the networked thermostat, by specifying each
of the eight parameters listed above.

Where is assurance of security accounted for in these theorems?

1. In TR discard cmd rule the authentication function inputTest eliminates all unauthenticated commands.

2. In TR exec cmd rule, the condition

∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs (P says prop (CMD cmd)::ins) s outs) ⇒

(M,Oi,Os) sat prop (CMD cmd)

corresponds to a derived inference rule in the C2 calculus. In effect, the theorem states that if the above is proved
to be a theorem in the C2 calculus, then the remaining if and only if clause of the theorem holds.

3. In TR trap cmd rule, similar to TR exec cmd rule, the condition

∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs (P says prop (CMD cmd)::ins) s outs) ⇒

(M,Oi,Os) sat prop TRAP

corresponds to a derived inference rule in the C2 calculus. In effect, the theorem states that if the above is proved
to be a theorem in the C2 calculus, then the remaining if and only if clause of the theorem holds.

38

Figure 6.8 Definition and Properties of Refined SSM Configurations and Interpretation
configuration2 =

CFG2 (’input -> (’command inst, ’principal, ’d, ’e) Form)
(’cert -> (’command inst, ’principal, ’d, ’e) Form)
((’command inst, ’principal, ’d, ’e) Form -> bool)
(’cert list)
(’state -> (’command inst, ’principal, ’d, ’e) Form)
(’input list) ’state (’output list)

[CFG2Interpret_def]

` CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇐⇒
(M,Oi,Os) satList MAP certInterpret certs ∧
(M,Oi,Os) sat inputInterpret x ∧
(M,Oi,Os) sat stateInterpret state

6.3 Secure State-Machines Using Message and Certificate Structures
The previous high-level state-machine descriptions relied on access-control logic formulas only. To illustrate how

details such as message and certificate structures are introduced, we develop a SSM description using polymorphic
messages and certificates, and corresponding interpretation functions. We show that the transition relations TR and
TR2 are logically equivalent when they are applied to their corresponding configurations.

Configurations and Their Interpretations Defined Figure 6.8 shows the type definition of configuration2 and its
interpretation function CFG2Interpret. The refined configuration configuration2 has eight components.

1. An input interpretation function with type ’input -> (’command inst, ’principal, ’d,’e)Form.
This function gives meaning to inputs in the access-control logic.

2. A certificate interpretation function with type ’cert -> (’command inst, ’principal, ’d,’e)Form.
This function gives meaning to certificates in the access-control logic.

3. An authentication function with type (’command inst, ’principal, ’d, ’e)Form -> bool that
returns true or false when applied to inputs expressed as access-control logic formulas. This function determines
whether or not commands originate from known and approved sources.

4. A list of certificates with type ’cert list that represent the security context, with security interpretation of
the current state, in which authenticated requests are authorized or not.

5. A state interpretation function with type ’state -> (’command inst, ’principal, ’d, ’e)Form
that maps a state into an access-control logic formula. The interpretation function and state are part of the secu-
rity context informing the decision on whether or not an authenticated request is authorized.

6. An input stream of access-control logic formulas ’input list.

7. The current state ’state.

8. An output stream ’output list.

Configuration Transition Relation TR2 Defined and Its Properties We define inductively the transition rela-
tion TR2 in an analogous way to the definition of TR. Appendix D.1 gives the HOL source code for defining TR2.
Appendix D.2 shows the three defining properties of TR2 in HOL resulting from the inductive definition. These prop-
erties are TR2 rules, TR2 ind, and TR2 cases, which are the transition rules, induction property, and cases theorem,
respectively.

39

Figure 6.9 Discard Command Rule for Transition Relation TR2
[TR2_discard_cmd_rule]

` TR2 (M,Oi,Os) discard
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state discard)
(Out state discard::outStream)) ⇐⇒

¬inputTest (inputInterpret x)

Figure 6.10 Execute Command Rule for Transition Relation TR2
[TR2_exec_cmd_rule]

` ∀ inputInterpret certInterpret inputTest certs stateInterpret
x cmd ins state outStream.

(∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇒
(M,Oi,Os) sat prop (CMD cmd)) ⇒

∀NS Out M Oi Os.
TR2 (M,Oi,Os) (exec (CMD cmd))

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret ins (NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ⇐⇒

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream) ∧

(M,Oi,Os) sat prop (CMD cmd)

Based on the defining properties of TR2 and CFG2Interpret, similar to TR, we prove three equality properties for
the three transition types, discard, exec (CMD cmd), and trap (CMD cmd).

Note that in the above three theorems, the following functions and types are parameterized, making the theorems
applicable to state machines in general using the concepts of discarding, trapping, and executing commands. The
specific parameters are:

1. inputInterpret: the input interpretation function

2. certInterpret: the interpretation function for certificates

3. inputTest: the authentication function,

4. stateInterp: the state interpretation function,

5. certs: the credentials, trust assumptions, delegations, and authorizations informing authorization decisions,

6. commands: commands are polymorphic,

7. states: states are polymorphic,

8. outputs: outputs are polymorphic,

9. NS: the next-state function, and

40

Figure 6.11 Trap Command Rule for Transition Relation TR2
[TR2_trap_cmd_rule]

` ∀ inputInterpret certInterpret inputTest certs stateInterpret
x cmd ins state outStream.

(∀M Oi Os.
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream) ⇒

(M,Oi,Os) sat prop TRAP) ⇒
∀NS Out M Oi Os.
TR2 (M,Oi,Os) (trap (CMD cmd))

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret ins (NS state (trap (CMD cmd)))
(Out state (trap (CMD cmd))::outStream)) ⇐⇒

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream) ∧

(M,Oi,Os) sat prop TRAP

10. Out: the output function.

The three theorems in Figures 6.9, 6.10, and 6.11, provide a parameterized framework for state machines with
specific formats for inputs and certificates. We use this framework in specific applications, such as the networked
thermostat, by specifying each of the eight parameters listed above.

In exactly the same way for TR, assurance of security is accounted for in TR2 as follows.

1. In TR2 discard cmd rule the authentication function inputTest eliminates all unauthenticated commands.

2. In TR2 exec cmd rule, the condition

∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇒
(M,Oi,Os) sat prop (CMD cmd)

corresponds to a derived inference rule in the C2 calculus. In effect, the theorem states that if the above is proved
to be a theorem in the C2 calculus, then the remaining if and only if clause of the theorem holds.

3. In TR2 trap cmd rule, similar to TR exec cmd rule, the condition

∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇒
(M,Oi,Os) sat prop TRAP

corresponds to a derived inference rule in the C2 calculus. In effect, the theorem states that if the above is proved
to be a theorem in the C2 calculus, then the remaining if and only if clause of the theorem holds.

41

Chapter 7

A Networked Thermostat Certified Secure by Design

Based on the all of the previous sections, we develop a networked thermostat that is certified secure by design. We
pick up where we left off in Section 1.2.2, which gave the top-level CONOPS of a networked thermostat. In the
descriptions that follow, we start from a top-level CONOPS and end with two secure state-machine descriptions (SSM)
of the thermostat. The first SSM is a high-level logical description. The second SSM is a refinement of the first.

The tasks we need to do are:

1. Enumerate all commands and segregate them into two classes: privileged and non-privileged.

2. Enumerate all principals and their associated privileges within the envisioned thermostat operating modes.

3. Enumerate all thermostat use cases.

4. Specify the certificates needed to support authentication and authorization for all the use cases.

5. Devise the top-level SSM description by specializing configurations with definitions of

(a) an authentication function,

(b) a set of certificates described as formulas in the access-control logic,

(c) a type for thermostat states,

(d) a state-interpretation function,

(e) a next-state function, and

(f) an output function.

6. Formally define what is meant by the term “security” by defining a security property that is preserved by all
thermostat SSM descriptions. Prove that all SSM descriptions satisfy the defined security property.

7. Refine the top-level SSM description into a second more detailed SSM description by augmenting the top-level
SSM description with definitions of

(a) an input message datatype,

(b) an input message interpretation function,

(c) a certificate datatype, and

(d) a certificate interpretation function.

8. Prove the top-level and refined SSM descriptions are equivalent.

7.1 Thermostat Commands: Privileged and Non-Privileged
Section 1.2.2, has a high-level description of thermostat commands, which we summarize as follows.

1. Setting the temperature value.

2. Enabling the Utility to exercise control over setting the temperature.

3. Disabling the Utility to exercise control over setting the temperature.

42

Figure 7.1 Thermostat Commands and Properties
privcmd = Set num | EU | DU

npriv = Status

command = PR privcmd | NP npriv

[privcmd_distinct_thm]

` (∀a. Set a 6= EU) ∧ (∀a. Set a 6= DU) ∧ EU 6= DU

[privcmd_nchotomy_thm]

` ∀pp. (∃n. pp = Set n) ∨ (pp = EU) ∨ (pp = DU)

[set_privcmd_11]

` ∀a a′. (Set a = Set a′) ⇐⇒ (a = a′)

[npriv_nchotomy_thm]

` ∀a. a = Status

[command_distinct_thm]

` ∀a′ a. PR a 6= NP a′

[command_nchotomy_thm]

` ∀cc. (∃p. cc = PR p) ∨ ∃n. cc = NP n

[set_command_11]

` (∀a a′. (PR a = PR a′) ⇐⇒ (a = a′)) ∧
∀a a′. (NP a = NP a′) ⇐⇒ (a = a′)

4. Reporting the Status of the thermostat, which is displayed on the thermostat and sent to the Server.

Temperature setting, enabling, and disabling the Utility’s ability to exercise control over the thermostat are viewed
as security-sensitive commands, as they can change the temperature setting and operating mode of the thermostat. In
contrast, the Status command is innocuous, i.e., not security-sensitive, because reporting the thermostat’s temperature
setting and operating mode changes nothing.

The above partitioning of commands into two types (sensitive and non-sensitive) and why, is vital to incorporating
security into designs from the beginning. In the case of the thermostat, the underlying basis for declaring a command
to be security sensitive or not is whether or not the command in question can change either the temperature setting or
operating mode.

Figure 7.1 shows the definitions of thermostat commands as types in HOL and their properties. These defini-
tions incorporate the distinctions between security-sensitive and innocuous commands. The privcmd type has three
thermostat commands, each of which are security sensitive and require Owner level privileges to execute.

1. Set num, which sets the temperature setting to the number supplied,

2. EU, which enables the Utility to control the thermostat, and

3. DU, which disables the Utility from controlling the thermostat.

The type npriv has a single thermostat command Status, which is innocuous and does not require Owner level privi-
leges to execute. The type command defines all the thermostat commands into a single type using the type constructor
PR for privileged commands privcmd, and the type constructor NP for npriv commands.

43

Figure 7.2 Networked Thermostat Principals
keyPrinc = CA | Server | Utility num

principal =
Role keyPrinc

| Key (keyPrinc pKey)
| Keyboard
| Owner num
| Account num num

Figure 7.1 has seven theorems describing the properties of commands. The distinct theorems state that each
command is different than all the others in its type. The nchotomy theorems completely enumerate the values or forms
of a member of the particular type can have. The 11 theorems, e.g., set privcmd 11, state (where applicable) that
identical values have identical components.

7.2 Thermostat Principals and Their Privileges

Recall Figure 1.2 in Section 1.2.2, which shows a networked thermostat receiving commands from two sources:
(1) a Keyboard directly connected to it, and (2) the Server using a network interface. The operating assumptions are
(1) all commands received from the Keyboard are from the Owner, and (2) the Server is relaying commands from the
Owner or a Utility. Owners and Utilities have a unique ID number, where ID numbers are modeled as natural numbers.

Principals

Figure 7.2 shows the type definitions of the principals that interact with the thermostat. The keyPrinc type defined
principals that will have asymmetric cryptographic keys. These principals are

1. CA: the Certificate Authority issuing public-key certificates.

2. Server: the Server relaying messages from the Owner or Utility to the thermostat.

3. Utility: the Utility with a numerical identifier to distinguish among the various utilities.

The principal type has five kinds of principals.

1. Principals that are keyPrincs, e.g., CA, Server, or Utility utilityID.

2. Public keys of keyPrincs, e.g., Key (pubK CA)—the public-key of the certificate authority CA.

3. A Keyboard attached to a thermostat.

4. An Owner with a unique numerical identifier to distinguish a thermostat and its owner from all other thermostats.

5. An Account on the Server with two numerical identifiers, one corresponding to the owner and the second corre-
sponding to a PIN or password.

Privileges

Principals and their associated privileges are shown in Table 7.1. Any command involving Owners is authorized.
Utilities are authorized on innocuous (non-security sensitive) commands. Utilities execute privileged commands only
if the thermostat’s operating mode is in a state that gives utilities authorization. All other listed principals have no
authorization to execute any command, innocuous or otherwise.

44

Principal Innocuous Commands Privileged Commands
Owner Yes Yes

Keyboard | Owner Yes Yes
Server | Owner Yes Yes

Server |Utility Yes
Yes, when Utility is enabled for

control. No, otherwise.
Public keys No No

CA No No
Owner accounts No No

Table 7.1: Principals and Their Associated Privileges

Figure 7.3 Manual Operation

Thermostat
Network
Interface

Keyboard/Display

Owner

7.3 Thermostat Use Cases
Manual Operation

The thermostat is operated manually whenever the physical controls on the thermostat are used. The presumption is
if the thermostat is operated manually then the Owner is behind the commands. This use case is illustrated, with the
security context of the thermostat, in Figure 7.3.

When commands come from the Keyboard, the interpretation of what is received is Keyboard |Owner says 〈command〉.
The thermostat’s security context is:

1. The Owner has full authority over all commands, i.e., Owner controls 〈command〉.

2. The Keyboard is the Owner’s delegate on 〈command〉. This is represented as Keyboard reps Owner on 〈command〉.

User Control Via the Server

The thermostat is also controlled by the Owner through the Owner’s Account on the Server. Figure 7.4 illustrates the
messages and security context of the Server and thermostat. The Server and thermostat assume that the Owner has
complete authority over all commands executed by the thermostat.

The Server identifies the Owner by the Account userid passwd associated with the Owner. After the Server authen-
ticates the command from the Owner, it relays the command to the thermostat in a message that is cryptographically
signed using its private key K−1

S . If the cryptographically signed message passes the integrity check using the Server’s
public key KS, then the message is interpreted to be KS | Owner says 〈command〉 by the thermostat.

The thermostat’s security context assumes:

1. The Owner has full authority over all commands, Owner controls 〈command〉.

2. The Server is the Owner’s delegate on 〈command〉. This is Server reps Owner on 〈command〉.

3. The public key of the certificate authority CA is KCA, i.e., KCA⇒CA.

4. CA is trusted on public keys, i.e., CA controls (KS⇒ Server).

45

Figure 7.4 Owner Control Via the Server

Owner Server Thermostat
Network
Interface

Keyboard/Display

Utility Control Via the Server

When the Utility wishes to take control of the Owner’s thermostat, e.g., to reduce air conditioning loads during peak
power periods during the work day, the Utility will send the Server a command cryptographically signed by its private
key K−1

U . If the cryptographically signed message passes the integrity check using the Utility’s public key KU , then
the message is interpreted to be KU | Owner says 〈priv cmd〉.

The Server has the content to authenticate the Utility’s message by verifying the cryptographic signature. The part
of the security context of the Server dealing with Utility authentication is:

1. CA controls (KU ⇒Utility), i.e. the Server trusts CA on public keys.

2. KCA says (KU ⇒Utility). This is the public-key certificate for KU cryptographically signed by KCA.

3. KCA⇒CA. This is a root trust assumption of the Server that KCA is indeed CA’s public key.

The remaining formulas in the Server’s security context all deal with establishing the conditions under which
the Server passes on the Utility’s privileged command 〈priv cmd〉. Specifically, the following three formulas set the
context for the Owner authorizing the Server to forward commands to the Owner’s thermostat. The first formula
states that the Owner has authority to authorize the Server to forward the request. The second formula is the actual
authorization by Account userid passwd, the Owner’s account. The third formula associates Account userid passwd
with the Owner.

1. Owner controls (Utility | Owner says 〈priv cmd〉 ⊃Utility says 〈priv cmd〉)

2. (Account userid passwd) says (Utility | Owner says 〈priv cmd〉 ⊃Utility says 〈priv cmd〉)

3. (Account userid passwd)⇒ Owner

The next two sections discuss the security context of the thermostat. The first section shows the security context
for authorizing the Utility to execute privileged commands, e.g., changing the temperature setting, on the thermostat.
The second section shows the case when the thermostat has not authorized the Utility to execute privileged commands.
If the Utility attempts to execute a privileged command, then it is trapped.

Both use cases share the same security context stating that the Owner has authority on privileged commands, the
Server is the Owner’s delegate, and the statements related to public-key certificates, the CA’s authority, and the root
trust assumption on the CA’s public key. The last statement says that the Server is the Utility’s delegate on privileged
commands.

1. Owner controls 〈priv cmd〉

2. Server reps Owner on 〈priv cmd〉

3. CA controls (KS⇒ Server)

4. KCA⇒CA

5. KCA says (KS⇒ Server)

6. Server reps Utility on 〈priv cmd〉

46

Figure 7.5 Utility Control Via the Server—Utility is Authorized

Utility Server Thermostat
Network
Interface

Keyboard/Display

Figure 7.6 Utility Control Via the Server—Utility is Not Authorized

Utility Server Thermostat
Network
Interface

Keyboard/Display

Utility Control is Authorized on All Commands Figure 7.5 illustrates the use case where the Utility is authorized
by the Owner to exercise privileged commands, such as changing the temperature setting of the thermostat. The
additional statement

Utility controls 〈NP npriv〉
Utility controls 〈PR privcmd〉

authorizes the Utility to execute all (privileged and non-privileged) commands.

Utility Control is Not Authorized on Privileged Commands Figure 7.6 illustrates the use case where the Utility
is not authorized by the Owner to exercise privileged commands, such as changing the temperature setting of the
thermostat, but is authorized to execute non-privileged (innocuous) commands. The additional statements

Utility controls 〈NP npriv〉
Utility says 〈PR privcmd〉 ⊃ 〈trap (PR privcmd)〉

forces privileged commands issued by the Utility to be trapped.

47

7.4 Security Contexts for the Server and Thermostat

Server Security Context

The combined security context covering all the use cases is as follows. An explanation of the intent of each formula
follows the formulas below.

1. Owner controls 〈cmd〉
2. (Account userid passwd)⇒ Owner

3.CA controls (KU ⇒Utility)

4. KCA says (KU ⇒Utility)

5. KCA⇒CA

6. Owner controls (Utility | Owner says 〈cmd〉 ⊃Utility says 〈cmd〉)
7. (Account userid passwd) says (Utility | Owner says 〈cmd〉 ⊃Utility says 〈cmd〉)

Formulas 1–2 Formula one states the Owner’s authority to execute any command on her thermostat. Formula 2
states the association between the Owner and her account Account userid passwd on the Server.

Formulas 3–5 Formulas three through five deal with certificate authorities, root CA public keys, and public-key
certificates. The third formula recognizes CA’s is trusted on distributing the public key of the Server. The fourth
formula corresponds to the public-key certificate of the Server digitally signed by CA’s private key. The fifth formula
is a root trust assumption stating that KCA is CA’s public key.

Formulas 6–7 The formulas six and seven state the Owner’s authority and statement to authorize the Server to
pass on commands from the Utility to the Owner’s thermostat.

Thermostat Security Context

The thermostat has two mutually exclusive operating modes, (1) the Utility is authorized to execute privileged security-
sensitive commands, which the thermostat will execute when received from the Utility relayed by the Server, or (2) the
Utility is unauthorized on privileged commands and will trap any attempt by the Utility to execute a privileged com-
mand received from the Utility relayed by the Server. As a preview to our next Chapter, we handle mutually-exclusive
operating modes by changing thermostat configurations. These mode or configuration changes switch security con-
texts and the commands to switch from one context to another are privileged and regarded as security sensitive. Such
configuration changes are described by labeled transitions generally, e.g., high-level state machine descriptions, and
by inductively-defined relations in HOL.

The common security context shared in both operating contexts is shown below. The intent of each formula follows
the formulas below.

1. Owner controls 〈cmd〉
2. Keyboard reps Owner on 〈cmd〉
3. Server reps Owner on 〈cmd〉
4.CA controls (KS⇒ Server)

5. KCA⇒CA

6. KCA says (KS⇒ Server)

7. Server reps Utility on 〈NP npriv〉
8. Server reps Utility on 〈PR privcmd〉
9.Utility controls 〈NP npriv〉

48

Figure 7.7 Definition of high-level certificate list in HOL
[certs_def]

` ∀ownerID utilityID cmd npriv privcmd.
certs ownerID utilityID cmd npriv privcmd =
[Name (Owner ownerID) controls prop (CMD cmd);
reps (Name Keyboard) (Name (Owner ownerID))
(prop (CMD cmd));

reps (Name (Role Server)) (Name (Owner ownerID))
(prop (CMD cmd));

Name (Role CA) controls
Name (Key (pubK Server)) speaks_for Name (Role Server);
Name (Key (pubK CA)) speaks_for Name (Role CA);
Name (Key (pubK CA)) says
Name (Key (pubK Server)) speaks_for Name (Role Server);
reps (Name (Role Server))
(Name (Role (Utility utilityID)))
(prop (CMD (NP npriv)));

reps (Name (Role Server))
(Name (Role (Utility utilityID)))
(prop (CMD (PR privcmd)));

Name (Role (Utility utilityID)) controls
prop (CMD (NP npriv))]

Formulas 1–3 The first formula states the Owner’s authority to execute any command 〈cmd〉. The second
formula states the Keyboard is the Owner’s delegate. In later refinements of the thermostat, we will interpret anything
typed on the Keyboard as Keyboard | Owner. The third formula states that the Server is trusted to be the Owner’s
delegate when the Server quotes the Owner. Note: this points to a risk with networked devices—the devices must
trust the integrity of their servers.

Formulas 4–6 The fourth, fifth, and sixth formulas deal with certificate authorities, root CA public keys, and
public-key certificates. The fourth formula recognizes CA’s is trusted on distributing the public key of the Server. The
fifth formula corresponds to the public-key certificate of the Server digitally signed by CA’s private key. The sixth
formula is a root trust assumption stating that KCA is CA’s public key.

Formulas 7–9 The seventh and eighth formulas state that the Server is trusted to be the Utility’s delegate when
the Server quotes the Utility on both non-privileged and privileged commands. The ninth and final formula states that
the Utility is authorized to execute non-privileged commands on the thermostat, e.g., query the status of the thermostat.
Note: the thermostat is relying again upon the integrity of the Server to quote the correct originating principal behind
a command. If the Server quotes the wrong principal, e.g., quotes the Owner instead of the Utility, then the thermostat
potentially is duped into executing an unauthorized privileged instruction.

High-level certificates defined in HOL Figure 7.7 shows the definition of certs in HOL. The definition of certs
is a list of access-control logic formulas in HOL corresponding to Formulas 1 through 9 above.

7.5 Top-Level Thermostat Secure State-Machine
The top-level thermostat SSM description is an instantiation of the high-level secure state-machine description in
Section 6.2. The top-level thermostat SSM specializes the general high-level SSM with the following instantiations.

1. The type variable ’command is instantiated with type command, as defined in Figure 7.1.

2. The type variable ’state is instantiated with type state defined below.

49

Figure 7.8 HOL Type Definitions of mode and state
mode = enabled | disabled

state = State mode num

Figure 7.9 Thermostat State Interpretation Function
[thermoStateInterp_def]

` (thermoStateInterp utilityID privcmd (State enabled temp) =
Name (Role (Utility utilityID)) controls
prop (CMD (PR privcmd))) ∧

(thermoStateInterp utilityID privcmd (State disabled temp) =
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd)) impf prop TRAP)

3. The state interpretation function in configuration is instantiated with thermoStateInterp defined below.

4. The type variable ’output is instantiated with type output defined below.

5. The next-state function NS is instantiated with thermo1NS defined below.

6. The output function Out is instantiated with thermo1Out defined below.

7. The certificate list in configuration is instantiated with the high-level certificate list certs, as defined in Figure 7.7.

8. The authentication function in configuration is instantiated with isAuthenticated defined below.

In the subsections immediately below, we describe each of the instantiations that have not yet been defined. We
then present theorems corresponding to each of the three transition types, discard, exec, and trap, specialized to the
thermostat.

States and Operating Modes

The thermostat has two operating modes: (1) the Utility is enabled to execute privileged instructions, or (2) the
Utility is disabled to execute privileged instructions. This is defined in HOL by the datatype mode.

We define the thermostat’s state as its operating mode and its temperature setting, which we model as a natural
number num in HOL. The type definitions of mode and state are in Figure 7.8.

State Interpretation Function

The interpretation function for thermostat states is given by thermoStateInterp def in Figure 7.9. The definition
covers both operating modes:

1. When the operating mode is enabled, then the Utility has authority to execute privileged commands.

thermoStateInterp utilityID privcmd (State enabled temp) =
Name (Role (Utility utilityID)) controls prop (CMD (PR privcmd))

2. When the operating mode is disabled, then the Utility’s attempt to execute any privileged instruction is trapped.

thermoStateInterp utilityID privcmd (State disabled temp) =
Name (Role (Utility utilityID)) says prop (CMD (PR privcmd)) impf
prop TRAP

The combination of thermoStateInterp with the nine access-control logic formulas in cert, defined in Figure 7.7, gives
the overall security context for the thermostat’s SSM to authorize authenticated commands.

50

Figure 7.10 Transition Diagram for Owner

enabled n disabled n

exec(CMD(PR EU))

enabled k disabled k

exec (CMD(PR DU))

exec (CMD(NP Status)) exec(CMD(NP Status))

…..

exec (CMD (PR (Set k)))

…..

exec(CMD(NP Status)) exec(CMD(NP Status))

exec(CMD(PR EU))

exec (CMD(PR DU))

exec (CMD (PR (Set k)))

exec(CMD(PR EU)) exec (CMD(PR DU))

exec (CMD(PR DU))

exec(CMD(PR EU))

exec (CMD (PR (Set j))) exec (CMD (PR (Set j)))

Figure 7.11 Transition Diagram for Utility

enabled n disabled n

exec (CMD (PR DU))

exec (CMD(PR EU))

enabled k disabled k

exec (CMD(PR (Set k)))

trap (CMD (PR DU)), trap (CMD (PR EU)),
trap(CMD(PR (Set k)))

exec (CMD(NP Status))

exec (CMD(NP Status))

exec (CMD(NP Status))

exec (CMD(NP Status))

exec (CMD (PR DU))

exec (CMD(PR EU))

exec (CMD(PR (Set j)))

trap (CMD (PR DU)), trap (CMD (PR EU)),
trap(CMD(PR (Set k)))

Next-State Function

The next-state transition function for the thermostat can be viewed from the standpoints of the Owner and Utility.
Figures 7.10 and 7.11 are the state-transition diagrams for Owner and Utility originated commands, respectively.
Figure 7.10 shows that Owners are authorized to execute any command in any state. In particular, they can change the
temperature settings and enable or disable the authority of Utilities to execute privileged commands.

Figure 7.11 show that Utilities can execute privileged commands only if their authority is enabled, i.e., the state
mode is enabled. If Utilities attempt to execute a privileged command in a disabled mode, the attempt is trapped. As
privileged commands are commands that can change the thermostat’s state, i.e., changing either a temperature or mode
value, trapped commands result in no state change.

Figure 7.12 shows the definition of thermo1NS, the next-state function for the thermostat. If the input is an exec
(CMD cmd), then the command results in the appropriate state change or status report. If the input is trap (CMD cmd),
then no state change occurs.

Figure 7.13 shows two theorems npriv Safe and privcmd Security Sensitive. The first theorem states that the next-
state function thermo1NS has the property that all non-privileged commands NP npriv result in no state change. The

51

Figure 7.12 Next-State Function for Thermostat
[thermo1NS_def]

` (thermo1NS (State opMode temp) discard = State opMode temp) ∧
(thermo1NS (State opMode temp)

(exec (CMD (PR (Set newTemp)))) =
State opMode newTemp) ∧

(thermo1NS (State opMode temp) (exec (CMD (PR EU))) =
State enabled temp) ∧

(thermo1NS (State opMode temp) (exec (CMD (PR DU))) =
State disabled temp) ∧

(thermo1NS (State opMode temp) (exec (CMD (NP Status))) =
State opMode temp) ∧

(thermo1NS (State opMode temp)
(trap (CMD (PR (Set newTemp)))) =

State opMode temp) ∧
(thermo1NS (State opMode temp) (trap (CMD (PR EU))) =
State opMode temp) ∧

(thermo1NS (State opMode temp) (trap (CMD (PR DU))) =
State opMode temp)

Figure 7.13 Security Properties of Thermostat Commands
[npriv_Safe]

` ∀npriv state. thermo1NS state (exec (CMD (NP npriv))) = state

[privcmd_Security_Sensitive]

` ∀privcmd.
∃state. thermo1NS state (exec (CMD (PR privcmd))) 6= state

second theorem states that for all privileged commands PR privcmd that a state change is possible when executing the
privileged command. These two theorems prove the non-privileged commands are safe, when safety is defined as no
change in temperature or operating mode, and that the privileged commands have the capability to change either mode
or temperature.

Input Authentication Function

The input authentication function for the top-level thermostat SSM, isAuthenticated, is defined by the HOL source
code in Figure 7.14. Recall, the top-level SSM uses only access-control logic formulas for inputs and certificates.
Given the use cases, there are only three forms of access-control logic formulas that are authenticated:

1. Keyboard | Owner says 〈inst〉, i.e., instructions entered in on the attached keyboard,

2. Server | Owner says 〈inst〉, i.e., the Server relaying instructions from the Owner, and

3. Server |Utility says 〈inst〉, i.e., the Server relaying instructions from the Utility.

All other forms of access-control logic formulas are not authenticated. The three cases above correspond to the first
three clauses in the definition in Figure 7.14. The last clause of the definition containing isAuthenticate _ =
F is interpreted by HOL as all other forms as input produce F as an output. The resulting definition is quite long and
appears in Appendix E.

52

Figure 7.14 HOL Source Code Defining isAuthenticated

v a l i s A u t h e n t i c a t e d d e f =
D ef in e
‘ (i s A u t h e n t i c a t e d

((((Name Keyboard) q u o t i n g (Name (Owner ownerID))) s a y s
(prop (CMD (cmd : command)))) : (command i n s t , p r i n c i p a l , ’ d , ’ e) Form) = T) /\

(i s A u t h e n t i c a t e d
((((Name (Key (pubK S e r v e r))) q u o t i n g (Name (Owner ownerID))) s a y s
(prop (CMD (cmd : command)))) : (command i n s t , p r i n c i p a l , ’ d , ’ e) Form) = T) /\

(i s A u t h e n t i c a t e d
((((Name (Key (pubK S e r v e r))) q u o t i n g (Name ((Role (U t i l i t y u t i l i t y I D))))) s a y s
(prop (CMD (cmd : command)))) : (command i n s t , p r i n c i p a l , ’ d , ’ e) Form) = T) /\

(i s A u t h e n t i c a t e d = F) ‘

Output Type and Output Function

Figure 7.15 Definition of Thermostat Output type and Output Function
output = report state | flag command | null

[thermo1Out_def]

` (thermo1Out (State enabled temp)
(exec (CMD (PR (Set newTemp)))) =

report (State enabled newTemp)) ∧
(thermo1Out (State disabled temp)

(exec (CMD (PR (Set newTemp)))) =
report (State disabled newTemp)) ∧

(thermo1Out (State enabled temp) (exec (CMD (PR EU))) =
report (State enabled temp)) ∧

(thermo1Out (State disabled temp) (exec (CMD (PR EU))) =
report (State enabled temp)) ∧

(thermo1Out (State enabled temp) (exec (CMD (PR DU))) =
report (State disabled temp)) ∧

(thermo1Out (State disabled temp) (exec (CMD (PR DU))) =
report (State disabled temp)) ∧

(thermo1Out (State enabled temp) (exec (CMD (NP Status))) =
report (State enabled temp)) ∧

(thermo1Out (State disabled temp) (exec (CMD (NP Status))) =
report (State disabled temp)) ∧

(thermo1Out (State enabled temp)
(trap (CMD (PR (Set newTemp)))) =

flag (PR (Set newTemp))) ∧
(thermo1Out (State disabled temp)

(trap (CMD (PR (Set newTemp)))) =
flag (PR (Set newTemp))) ∧

(thermo1Out (State enabled temp) (trap (CMD (PR EU))) =
flag (PR EU)) ∧

(thermo1Out (State disabled temp) (trap (CMD (PR EU))) =
flag (PR EU)) ∧

(thermo1Out (State enabled temp) (trap (CMD (PR DU))) =
flag (PR DU)) ∧

(thermo1Out (State disabled temp) (trap (CMD (PR DU))) =
flag (PR DU)) ∧

(thermo1Out (State enabled temp) discard = null) ∧
(thermo1Out (State disabled temp) discard = null)

53

Figure 7.15 shows the definitions of the thermostat output type output and the output function thermo1Out. There
are three kinds of outputs:

1. reporting a state,

2. flagging a command, and

3. null.

Whenever a command is executed, then the new state is reported as output. If a command is trapped, then the command
is flagged. If an input is discarded, the null is output.

Transition Theorems

Figure 7.16 Configuration Interpretation Justifies Executing Keyboarded Command
[CFGInterpret_Owner_Keyboard_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)::ins) s outs) ⇒

(M,Oi,Os) sat prop (CMD cmd)

Figure 7.17 Executing Keyboarded Commands is Justified
[exec_Keyboard_Owner_cmd_Justified]

` ∀NS Out outs s ins npriv privcmd cmd ownerID utilityID M Oi
Os.

TR (M,Oi,Os) (exec (CMD cmd))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)::ins) s outs)

(CFG isAuthenticated
(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs)) ⇒

(M,Oi,Os) sat prop (CMD cmd)

54

Figure 7.18 Configuration Interpretation Justifies Executing Owner’s Command Via Server
[CFGInterpret_Owner_KServer_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Owner ownerID) says prop (CMD cmd)::ins) s

outs) ⇒
(M,Oi,Os) sat prop (CMD cmd)

Figure 7.19 Executing Owner Command Via Server is Justified
[exec_KServer_Owner_cmd_Justified]

` ∀NS Out outs s ins npriv privcmd cmd ownerID utilityID M Oi
Os.

TR (M,Oi,Os) (exec (CMD cmd))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Owner ownerID) says prop (CMD cmd)::ins) s

outs)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs)) ⇒

(M,Oi,Os) sat prop (CMD cmd)

Figure 7.20 Configuration Interpretation Justifies Executing Innocuous Utility Command Via Server
[CFGInterpret_Utility_KServer_npriv_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (NP npriv))::ins) s outs) ⇒

(M,Oi,Os) sat prop (CMD (NP npriv))

55

Figure 7.21 Executing Utility Innocuous Command Via Server is Justified
[exec_KServer_Utility_npriv_Justified]

` ∀NS Out outs s ins npriv privcmd cmd ownerID utilityID M Oi
Os.

TR (M,Oi,Os) (exec (CMD (NP npriv)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (NP npriv))::ins) s outs)

(CFG isAuthenticated
(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS s (exec (CMD (NP npriv))))
(Out s (exec (CMD (NP npriv)))::outs)) ⇒

(M,Oi,Os) sat prop (CMD (NP npriv))

Figure 7.22 Configuration Interpretation Justifies Executing Utility Privileged Command
[CFGInterpret_Utility_KServer_privcmd_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State enabled temperature) outs) ⇒
(M,Oi,Os) sat prop (CMD (PR privcmd))

56

Figure 7.23 Executing Utility Privileged Command Via Server is Justified
[exec_KServer_Utility_privcmd_Justified]

` ∀NS Out outs temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State enabled temperature) outs)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outs)) ⇒
(M,Oi,Os) sat prop (CMD (PR privcmd))

Figure 7.24 Configuration Interpretation Justifies Trapping Utility Privileged Command
[CFGInterpret_Utility_KServer_trap_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State disabled temperature) outs) ⇒
(M,Oi,Os) sat prop TRAP

57

Figure 7.25 Trapping Utility Privileged Command Via Server is Justified
[trap_KServer_Utility_privcmd_Justified]

` ∀NS Out outs temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR (M,Oi,Os) (trap (CMD (PR privcmd)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State disabled temperature) outs)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS (State disabled temperature)

(trap (CMD (PR privcmd))))
(Out (State disabled temperature)

(trap (CMD (PR privcmd)))::outs)) ⇒
(M,Oi,Os) sat prop TRAP

We present five configuration theorems and five transition theorems that characterize the behavior of the thermostat.
All justify the properties that state if a SSM transition occurred corresponding to executing or trapping an instruction,
then it was justified by the security interpretation of the starting configuration.

Figures 7.16, 7.18, 7.20, 7.22, and 7.24 show that executing or trapping an instruction is derivable from the
security interpretation provided by CFGInterpret applied to the starting configuration. These theorems show that the
certificates, state interpretation, and input, do in fact justify executing or trapping an instruction. In other words, that
the SSM’s actions correspond to sound inference rules.

For example, the theorem CFGInterpret Utility KServer privcmd thm in Figure 7.22 states that the security in-
terpretation of the starting configuration justifies executing the privileged command requested by the Utility via
the Server. Specifically, (M,Oi,Os) sat prop (CMD (PR privcmd)) is derivable from the interpretation
CFGInterpret applied to the configuration shown below.

[CFGInterpret_Utility_KServer_privcmd_thm]

` ∀M Oi Os.
CFGInterpret (M,Oi,Os)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)
(State enabled temperature) outs) ⇒

(M,Oi,Os) sat prop (CMD (PR privcmd))

The theorems in Figures 7.16, 7.18, 7.20, 7.22, and 7.24 in conjunction with the TR exec cmd rule theorem,
previously proved in Figure 6.6, give rise to the execution and trap theorems in Figures 7.17, 7.19, 7.21, 7.23, and
7.25.

As an example, the CFGInterpret Utility KServer privcmd thm theorem, exec KServer Utility privcmd Justified
shown below and in Figure 7.23. The theorem states that if a TR transition occurs corresponding to executing a
privileged instruction, i.e., (exec (CMD (PR privcmd))), then executing command was necessarily authorized.

[exec_KServer_Utility_privcmd_Justified]

58

` ∀NS Out outs temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State enabled temperature) outs)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outs)) ⇒
(M,Oi,Os) sat prop (CMD (PR privcmd))

7.6 Refined Thermostat Secure State-Machine

The refined thermostat SSM is an instantiation of the refined secure state-machine description in Section 6.3. In
addition to the instantiations for the top-level thermostat SSM description in Section 7.5, we refine the top-level
description by instantiating the following:

1. algebraic types for orders (commands with principals) and messages (orders sent with digital signatures over
the network or from the keyboard),

2. an integrity-checking function checkmsg,

3. a message interpretaton function msgInterpret,

4. algebraic types for certificates used to specify the security context,

5. a message integrity-checking function checkmsg, which checks digital signatures, and

6. an interpretation function cert2Interpret.

59

Thermostat Orders and Messages

Figure 7.26 Definitions and Theorems for Orders and Messages
order = ORD keyPrinc principal command

[order_one_one]

` ∀a0 a1 a2 a′0 a′1 a′2.
(ORD a0 a1 a2 = ORD a′0 a′1 a′2) ⇐⇒
(a0 = a′0) ∧ (a1 = a′1) ∧ (a2 = a′2)

msg =
KB num command

| MSG keyPrinc principal order
((order digest, keyPrinc) asymMsg)

[msg_distinct_thm]

` ∀a3 a2 a′1 a1 a′0 a0. KB a0 a1 6= MSG a′0 a′1 a2 a3

[msg_one_one]

` (∀a0 a1 a′0 a′1.
(KB a0 a1 = KB a′0 a′1) ⇐⇒ (a0 = a′0) ∧ (a1 = a′1)) ∧

∀a0 a1 a2 a3 a′0 a′1 a′2 a′3.
(MSG a0 a1 a2 a3 = MSG a′0 a′1 a′2 a′3) ⇐⇒
(a0 = a′0) ∧ (a1 = a′1) ∧ (a2 = a′2) ∧ (a3 = a′3)

Orders Continuing the development of a secure networked thermostat, we add the definition of an order to the
definitions and properties of commands and principals. The purpose of the order type is to add authentication and
authorization to commands received via the network. This is done by including information on the principals sending
commands to thermostats and on whose behalf the senders are acting. Figure 7.26 shows that an order has three
components:

1. A keyPrinc that is sending the message.

2. A principal on whose behalf the keyPrinc is acting.

3. A command issued to the thermostat, e.g., ORD Server (Role (Utility utilityID)) (PR (Set temperature))—
the Server passing on a Set temperature command from Utility utilityID.

The theorem order one one states that two orders are the same if and only if their components are the same.

Messages We finally define the type msg as shown in Figure 7.26. A message received by a thermostat has two
sources:

1. the attached keyboard from a thermostat associated with an ownerID number, e.g., KB userID (NP Status),
and

2. the Server sending commands from the Owner or Utility using the network, e.g.,

MSG Server (Role(Utility utilityID))
(ORD Server (Role(Utility utilityID))(NP Status))
signature

where the signature is obtained by signing the hash of the order using the Server’s private key, i.e.,

60

sign
(privK Server)
(hash
(SOME
(ORD Server (Role(Utility utilityID)) (NP Status))))

The theorems order one one, msg distinct thm, and msg one one are similar to their counterparts for other types.
The distinct theorem states that network messages are distinct from keyboard messages. The one one theorems state
that two orders or messages are the same if and only if their corresponding components are the same.

Authenticating and Checking the Integrity of Messages

Figure 7.27 Authenticating and Checking the Integrity of Messages
[checkmsg_def]

` (checkmsg
(MSG sender recipient (ORD originator role cmd)

signature) ⇐⇒
signVerify (pubK sender) signature
(SOME (ORD originator role cmd)) ∧

(sender = originator)) ∧ (checkmsg (KB ownerID cmd) ⇐⇒ T)

[checkmsg_OK]

` ((∀ownerID sender recipient originator role cmd.
(sender = originator) ⇒
checkmsg

(MSG sender recipient (ORD originator role cmd)
(sign (privK sender)

(hash (SOME (ORD originator role cmd)))))) ∧
∀ownerID sender recipient originator role cmd.

sender 6= originator ⇒
¬checkmsg

(MSG sender recipient (ORD originator role cmd)
(sign (privK sender)

(hash (SOME (ORD originator role cmd)))))) ∧
∀ownerID cmd. checkmsg (KB ownerID cmd)

Now that the format and contents of messages received by the thermostat are formally defined, we are able to define
how messages, orders, and commands are authenticated and checked for integrity. Figure 7.27 shows the definition of
checkmsg and the theorem checkmsg OK, where checkmsg OK shows that checkmsg has the properties we expect.

Looking at the definition of checkmsg, we see three things:

1. checkmsg applied to orders sent over the network via the Server are checked using cryptographic-based digital
signatures. Specifically, the digest of the received order is compared against the digest of the original order en-
crypted using the private key of the sender. This comparison is done using the previously defined cryptographic
operation signVerify.

2. checkmsg as defined requires the sender value in the message to match the originator value in the order. Of
course, there are other definitions of integrity where this might not be the case. We take this approach only as
one example out of many.

3. checkmsg applied to commands originating from the attached keyboard are assumed to be authentic, i.e., only
the owner or people with the owner’s permission are able to enter commands in manually. Hence, the value of
checkmsg applied to keyboard-mediated commands is always true. This is only one possible approach. There

61

are many possible approaches including biometric-based authentication. For reasons of simplicity and brevity,
we assume only Owners or their delegates have physical access to a thermostat’s keyboard.

The theorem checkmsg OK reflects the design decisions on integrity-checking policy and assumptions contained
in checkmsg.

1. When the sender and originator match on messages received over the network from the Server, and the digital
signature is generated as expected using the previously defined cryptographic operation sign, then checkmsg will
be true, indicating a the received message is intact and authenticated.

2. When the sender and originator do not match, even when the digital signature is generated as expected,
checkmsg will be false, indicating the message is not authenticated.

3. Any well-formed keyboard input is regarded as authentic. This reflections the assumption that only the Owner
or the Owner’s delegates have physical access to the thermostat’s keyboard.

Section 7.6, which follows below, defines the meaning of authenticated messages in the access-control logic. A
precise definition of the semantics of messages is essential for assuring a unified view of security among all levels of
abstraction.

Interpreting Messages

Figure 7.28 Message Semantics
[msgInterpret_def]

` (msgInterpret
(MSG sender recipient (ORD originator role cmd)

signature) =
if

checkmsg
(MSG sender recipient (ORD originator role cmd)

signature)
then

Name (Key (pubK sender)) quoting Name role says
prop (CMD cmd)

else TT) ∧
(msgInterpret (KB ownerID cmd) =

if checkmsg (KB ownerID cmd) then
Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)

else TT)

62

Figure 7.29 Message Interpretation Theorems
[msgInterpretKB]

` (M,Oi,Os) sat msgInterpret (KB ownerID cmd) ⇐⇒
(M,Oi,Os) sat
Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)

[msgInterpretMSG_sender_originator_match]

` msgInterpret
(MSG sender recipient (ORD sender role cmd)

(sign (privK sender)
(hash (SOME (ORD sender role cmd))))) =

Name (Key (pubK sender)) quoting Name role says
prop (CMD cmd)

[msgInterpretMSG_denied]

` sender 6= originator ⇒
(msgInterpret

(MSG sender recipient (ORD originator role cmd)
(sign (privK sender)

(hash (SOME (ORD originator role cmd))))) =
TT)

The formal infrastructure of the access-control logic and algebraic models of idealized cryptographic operations
accounts for authentication and authorization within the defined interpretation of messages. Figure 7.28 shows the
theorem msgInterpret def, which is defines the interpretation or meaning of messages thermostats receive either from
the network or from their keyboards. The function msgInterpret is defined over the two forms of type msg:

1. MSG sender recipient (ORD originator role cmd) signature), i.e., messages from the
network, which are expected to be cryptographically signed, and

2. KB ownerID cmd, i.e., messages coming directly from a thermostat’s keyboard.

In either MSG or KB messages, first, the incoming message is checked using checkmsg, and if the message passes the
integrity check, the message’s non-trivial meaning in the access-control logic is given. If the message fails checkmsg,
then the assigned meaning is the trivial assumption TT in the access-control logic. Recall KB messages that are well-
formed are always authenticated. MSG messages are authenticated using their digital signatures and verify that the
sender and originator are the same.

If an MSG message is authenticated, then its interpretation is

Name (Key (pubK sender)) quoting Name role says prop (CMD cmd)

If a KB message is authenticated, then its interpretation is

Name Keyboard quoting Name (Owner ownerID) says prop (CMD cmd)

63

Thermostat Certificates

Figure 7.30 Structure and Integrity-Checking of Thermostat Security Certificates
cert2 =

RCtrCert principal command
| RRepsCert principal principal command
| RCtrKCert keyPrinc keyPrinc keyPrinc
| RKeyCert keyPrinc keyPrinc
| KeyCert keyPrinc keyPrinc (keyPrinc pKey)

(((keyPrinc × keyPrinc pKey) digest, keyPrinc)
asymMsg)

[checkcert2_def]

` (checkcert2 (RCtrCert P cmd) ⇐⇒ T) ∧
(checkcert2 (RRepsCert P Q cmd) ⇐⇒ T) ∧
(checkcert2 (RCtrKCert keyPpr Kq keyQpr) ⇐⇒ T) ∧
(checkcert2 (RKeyCert kp keyPpr) ⇐⇒ T) ∧
(checkcert2 (KeyCert CApr Ppr (pubK Rpr) signature) ⇐⇒
signVerify (pubK CApr) signature (SOME (Ppr,pubK Rpr)))

Figure 7.31 Interpretation of Thermostat Security Certificates
[cert2Interpret_def]

` (cert2Interpret (RCtrCert P cmd) =
if checkcert2 (RCtrCert P cmd) then

Name P controls prop (CMD cmd)
else TT) ∧

(cert2Interpret (RRepsCert P Q cmd) =
if checkcert2 (RRepsCert P Q cmd) then

reps (Name P) (Name Q) (prop (CMD cmd))
else TT) ∧

(cert2Interpret (RCtrKCert ca keyKpr keyPpr) =
if checkcert2 (RCtrKCert ca keyKpr keyPpr) then

Name (Role ca) controls
Name (Key (pubK keyKpr)) speaks_for Name (Role keyPpr)

else TT) ∧
(cert2Interpret (RKeyCert kppr ca) =

if checkcert2 (RKeyCert kppr ca) then
Name (Key (pubK kppr)) speaks_for Name (Role ca)

else TT) ∧
(cert2Interpret (KeyCert ca keyPpr (pubK keyRpr) signature) =

if
checkcert2 (KeyCert ca keyPpr (pubK keyRpr) signature)

then
Name (Key (pubK ca)) says
Name (Key (pubK keyRpr)) speaks_for Name (Role keyPpr)

else TT)

64

Figure 7.32 Interpretation Theorems for Security Certificates
[cert2InterpretRCtrCert]

` (M,Oi,Os) sat cert2Interpret (RCtrCert (Role P) cmd) ⇐⇒
(M,Oi,Os) sat Name (Role P) controls prop (CMD cmd)

[cert2InterpretRRepsCert]

` (M,Oi,Os) sat
cert2Interpret (RRepsCert (Role P) (Role Q) cmd) ⇐⇒
(M,Oi,Os) sat
reps (Name (Role P)) (Name (Role Q)) (prop (CMD cmd))

[cert2InterpretRCtrKCert]

` (M,Oi,Os) sat cert2Interpret (RCtrKCert P Q Q) ⇐⇒
(M,Oi,Os) sat
Name (Role P) controls
Name (Key (pubK Q)) speaks_for Name (Role Q)

[cert2InterpretRKeyCert]

` (M,Oi,Os) sat cert2Interpret (RKeyCert P P) ⇐⇒
(M,Oi,Os) sat Name (Key (pubK P)) speaks_for Name (Role P)

[cert2InterpretKeyCert]

` (M,Oi,Os) sat
cert2Interpret

(KeyCert ca P (pubK P)
(sign (privK ca) (hash (SOME (P,pubK P))))) ⇐⇒

(M,Oi,Os) sat
Name (Key (pubK ca)) says
Name (Key (pubK P)) speaks_for Name (Role P)

All commands to the thermostat, which are packaged within MSG or KB messages of type msg, are evaluated
within a security context specified by two kinds of statements:

1. root certificates, i.e., root trust assumptions corresponding to access-control logic statements, which are un-
signed because there is no higher authority than root, and

2. digitally signed certificates, i.e., statements that have meaning in the access-control logic that are signed using
the private-key of an authority, presumably recognized by thermostat.

In a way that is exactly analogous to MSGmessages, digitally signed certificates are authenticated using their digital
signatures. Similar to KB messages, which do not have associated signatures, root certificates are taken at face value.
In our thermostat example, we have four root certificates and one signed certificate.

1. Root Certificates

(a) Command authority, RCtrCert P cmd, interpreted as

Name P controls prop (CMD cmd)

(b) Delegation certificate, RRepsCert P Q cmd, interpreted as

reps (Name P) (Name Q) (prop (CMD cmd))

(c) Key authority, RCtrKCert ca keyKpr keyPpr, interpreted as

Name (Role ca) controls Name (Key (pubK keyKpr)) speaks for Name (Role keyPpr)

65

(d) Root key certificate, RKeyCert kppr ca, interpreted as

Name (Key (pubK kppr)) speaks for Name (Role ca)

2. Signed public-key certificate, KeyCert ca keyPpr (pubK keyRpr) signature, if authenticated is interpreted as

Name (Key (pubK ca)) says Name (Key (pubK keyRpr)) speaks for Name (Role keyPpr)

Figure 7.30 defines the type cert2 of thermostat certificates described above. The theorem checkcert2 def in
Figure 7.30 defines the integrity-checking function for cert2 certificates. The four root certificates are taken at face
value. Signed key certificates are checked using their digital signatures in exactly the same way as MSG messages
using the previously defined crypto-function signVerify.

Certificate Interpretation Function

Figure 7.31 shows the formal definition in HOL of cert2Interpret def, the theorem defining the mapping of cert2 cer-
tificates in the access-control logic formulas. The definition also appears below. Figure 7.32 shows the corresponding
meaning of each certificate in terms of Kripke structures satisfying the access-control logic interpretation of each of
the five certificate forms.

[cert2Interpret_def]

` (cert2Interpret (RCtrCert P cmd) =
if checkcert2 (RCtrCert P cmd) then
Name P controls prop (CMD cmd)

else TT) ∧
(cert2Interpret (RRepsCert P Q cmd) =

if checkcert2 (RRepsCert P Q cmd) then
reps (Name P) (Name Q) (prop (CMD cmd))

else TT) ∧
(cert2Interpret (RCtrKCert ca keyKpr keyPpr) =

if checkcert2 (RCtrKCert ca keyKpr keyPpr) then
Name (Role ca) controls
Name (Key (pubK keyKpr)) speaks_for Name (Role keyPpr)

else TT) ∧
(cert2Interpret (RKeyCert kppr ca) =

if checkcert2 (RKeyCert kppr ca) then
Name (Key (pubK kppr)) speaks_for Name (Role ca)

else TT) ∧
(cert2Interpret (KeyCert ca keyPpr (pubK keyRpr) signature) =

if
checkcert2 (KeyCert ca keyPpr (pubK keyRpr) signature)

then
Name (Key (pubK ca)) says
Name (Key (pubK keyRpr)) speaks_for Name (Role keyPpr)

else TT)

Note that a certificate’s interpretation in the access-control logic is the trivial assumption TT, if it fails its integrity
check. Root certificates are not digitally signed, as there is no higher level authority to certify them. These are
interpreted at face value, with the assumption that root certificates are loaded into the thermostat under controlled
and secure circumstances. Certificates with a digital signature, e.g., KeyCerts, have their signatures checked using
signVerify. This is shown below by checkcert2 def.

[checkcert2_def]

` (checkcert2 (RCtrCert P cmd) ⇐⇒ T) ∧
(checkcert2 (RRepsCert P Q cmd) ⇐⇒ T) ∧
(checkcert2 (RCtrKCert keyPpr Kq keyQpr) ⇐⇒ T) ∧

66

(checkcert2 (RKeyCert kp keyPpr) ⇐⇒ T) ∧
(checkcert2 (KeyCert CApr Ppr (pubK Rpr) signature) ⇐⇒
signVerify (pubK CApr) signature (SOME (Ppr,pubK Rpr)))

For example, the interpretation of a root key certificate RKeyCert is as follows.

[cert2InterpretRKeyCert]

` (M,Oi,Os) sat cert2Interpret (RKeyCert P P) ⇐⇒
(M,Oi,Os) sat Name (Key (pubK P)) speaks_for Name (Role P)

For digitally signed KeyCerts, theorem cert2InterpretKeyCert shows that key certificates signed as expected are
interpreted as expected.

[cert2InterpretKeyCert]

` (M,Oi,Os) sat
cert2Interpret
(KeyCert ca P (pubK P)

(sign (privK ca) (hash (SOME (P,pubK P))))) ⇐⇒
(M,Oi,Os) sat
Name (Key (pubK ca)) says
Name (Key (pubK P)) speaks_for Name (Role P)

Transition Theorems

Figure 7.33 Configuration Interpretation Justifies Executing Keyboarded Command
[CFG2Interpret_Owner_Keyboard_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(KB ownerID cmd::ins) state outStream) ⇒

(M,Oi,Os) sat prop (CMD cmd)

Figure 7.34 Executing Keyboarded Commands is Justified
[exec2_Keyboard_Owner_cmd_Justified]

` ∀NS Out M Oi Os.
TR2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(KB ownerID cmd::ins) state outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ⇒

(M,Oi,Os) sat prop (CMD cmd)

67

Figure 7.35 Configuration Interpretation Justifies Executing Owner’s Command Via Server
[CFG2Interpret_Owner_KServer_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Owner ownerID)

(ORD Server (Owner ownerID) cmd)
(sign (privK Server)

(hash
(SOME (ORD Server (Owner ownerID) cmd))))::

ins) state outStream) ⇒
(M,Oi,Os) sat prop (CMD cmd)

Figure 7.36 Executing Owner Command Via Server is Justified
[exec2_KServer_Owner_cmd_Justified]

` ∀NS Out M Oi Os.
TR2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Owner ownerID)

(ORD Server (Owner ownerID) cmd)
(sign (privK Server)

(hash
(SOME (ORD Server (Owner ownerID) cmd))))::

ins) state outStream)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ⇒

(M,Oi,Os) sat prop (CMD cmd)

Figure 7.37 Configuration Interpretation Justifies Executing Innocuous Utility Command Via Server
[CFG2Interpret_Utility_KServer_npriv_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID)) (NP npriv))
(sign (privK Server)

(hash
(SOME

(ORD Server (Role (Utility utilityID))
(NP npriv)))))::ins) state outStream) ⇒

(M,Oi,Os) sat prop (CMD (NP npriv))

68

Figure 7.38 Executing Utility Innocuous Command Via Server is Justified
[exec2_KServer_Utility_npriv_Justified]

` ∀NS Out outStream state ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR2 (M,Oi,Os) (exec (CMD (NP npriv)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID)) (NP npriv))
(sign (privK Server)

(hash
(SOME

(ORD Server (Role (Utility utilityID))
(NP npriv)))))::ins) state outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS state (exec (CMD (NP npriv))))
(Out state (exec (CMD (NP npriv)))::outStream)) ⇒

(M,Oi,Os) sat prop (CMD (NP npriv))

Figure 7.39 Configuration Interpretation Justifies Executing Utility Privileged Command
[CFG2Interpret_Utility_KServer_privcmd_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State enabled temperature) outStream) ⇒

(M,Oi,Os) sat prop (CMD (PR privcmd))

69

Figure 7.40 Executing Utility Privileged Command Via Server is Justified
[exec2_KServer_Utility_privcmd_Justified]

` ∀NS Out outStream temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR2 (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State enabled temperature) outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outStream)) ⇒
(M,Oi,Os) sat prop (CMD (PR privcmd))

Figure 7.41 Configuration Interpretation Justifies Trapping Utility Privileged Command
[CFG2Interpret_trap_Utility_KServer_trap_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State disabled temperature) outStream) ⇒

(M,Oi,Os) sat prop TRAP

70

Figure 7.42 Trapping Utility Privileged Command Via Server is Justified
[trap2_KServer_Utility_privcmd_Justified]

` ∀NS Out outStream temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR2 (M,Oi,Os) (trap (CMD (PR privcmd)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State disabled temperature) outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS (State disabled temperature)

(trap (CMD (PR privcmd))))
(Out (State disabled temperature)

(trap (CMD (PR privcmd)))::outStream)) ⇒
(M,Oi,Os) sat prop TRAP

The refined thermostat SSM description has ten theorems characterizing its behavior corresponding to the ten
theorems for the top-level SSM. Five of the theorems show that the security interpretation of configuration2 justifies
executing or trapping the particular instructions shown. These theorems are derived inference rules in C2 calculus. The
five configuration2 theorems are Figures 7.33, 7.35, 7.37, 7.39, and 7.41. For example, the theorem CFG2Interpret -
Utility KServer privcmd thm shows that executing a privileged command at the request of the Utility is derivable from
the configuration shown in the theorem below. This corresponds exactly to the top-level SSM description, except that
the access-control logic formulas corresponding to inputs and certificates is now replaced by input and certificate data
structures, and their interpretations.

[CFG2Interpret_Utility_KServer_privcmd_thm]

` ∀M Oi Os.
CFG2Interpret (M,Oi,Os)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State enabled temperature) outStream) ⇒

(M,Oi,Os) sat prop (CMD (PR privcmd))

The refined execution theorems corresponding to the top-level SSM execution theorems are in Figures 7.34, 7.36,
7.38, 7.40, and 7.42. As an example, the exec2 KServer Utility privcmd Justified is shown below. Similar to its

71

counterpart in the top-level SSM description, the theorem states that if a transition occurred corresponding to executing
a privileged command from the Utility, then the execution was justified.

[exec2_KServer_Utility_privcmd_Justified]

` ∀NS Out outStream temperature ins npriv privcmd cmd ownerID
utilityID M Oi Os.

TR2 (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins)
(State enabled temperature) outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outStream)) ⇒
(M,Oi,Os) sat prop (CMD (PR privcmd))

72

7.7 Equivalence of Top-Level and Refined Secure State-Machines

Figure 7.43 TR and TR2 Equivalence for Keyboard Commands
[TR2_iff_TR_Keyboard_Owner_cmd]

` ∀M Oi Os ownerID utilityID ins ins2 outStream NS Out state
npriv privcmd cmd.

TR2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(KB ownerID cmd::ins2) state outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins2
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ⇐⇒

TR (M,Oi,Os) (exec (CMD cmd))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)::ins) state outStream)

(CFG isAuthenticated
(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream))

73

Figure 7.44 TR and TR2 Equivalence for Owner Commands Via Server
[TR2_iff_TR_KServer_Owner_cmd]

` ∀M Oi Os ownerID utilityID ins ins2 outStream NS Out state
npriv privcmd cmd.

TR2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Owner ownerID)

(ORD Server (Owner ownerID) cmd)
(sign (privK Server)

(hash
(SOME (ORD Server (Owner ownerID) cmd))))::

ins2) state outStream)
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins2
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ⇐⇒

TR (M,Oi,Os) (exec (CMD cmd))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Owner ownerID) says prop (CMD cmd)::ins) state

outStream)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream))

74

Figure 7.45 TR and TR2 Equivalence for Utility Non-Privileged Commands Via Server
[TR2_iff_TR_KServer_Utility_npriv]

` ∀M Oi Os ownerID utilityID ins ins2 outStream NS Out state
npriv privcmd cmd.

TR2 (M,Oi,Os) (exec (CMD (NP npriv)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID)) (NP npriv))
(sign (privK Server)

(hash
(SOME

(ORD Server (Role (Utility utilityID))
(NP npriv)))))::ins2) state outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins2
(NS state (exec (CMD (NP npriv))))
(Out state (exec (CMD (NP npriv)))::outStream)) ⇐⇒

TR (M,Oi,Os) (exec (CMD (NP npriv)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (NP npriv))::ins) state outStream)

(CFG isAuthenticated
(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS state (exec (CMD (NP npriv))))
(Out state (exec (CMD (NP npriv)))::outStream))

75

Figure 7.46 TR and TR2 Equivalence for Utility Privileged Commands Via Server
[TR2_iff_TR_KServer_Utility_privcmd]

` ∀M Oi Os ownerID utilityID ins ins2 temperature outStream NS
Out npriv privcmd cmd.

TR2 (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins2)
(State enabled temperature) outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins2
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outStream)) ⇐⇒
TR (M,Oi,Os) (exec (CMD (PR privcmd)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State enabled temperature) outStream)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS (State enabled temperature)

(exec (CMD (PR privcmd))))
(Out (State enabled temperature)

(exec (CMD (PR privcmd)))::outStream))

76

Figure 7.47 TR and TR2 Equivalence for Trapping Utility Privileged Commands Via Server
[TR2_iff_TR_KServer_Utility_trap]

` ∀M Oi Os ownerID utilityID ins ins2 temperature outStream NS
Out npriv privcmd cmd.

TR2 (M,Oi,Os) (trap (CMD (PR privcmd)))
(CFG2 msgInterpret cert2Interpret isAuthenticated

(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd)
(MSG Server (Role (Utility utilityID))

(ORD Server (Role (Utility utilityID))
(PR privcmd))

(sign (privK Server)
(hash

(SOME
(ORD Server (Role (Utility utilityID))

(PR privcmd)))))::ins2)
(State disabled temperature) outStream)

(CFG2 msgInterpret cert2Interpret isAuthenticated
(certs2 ownerID utilityID cmd npriv privcmd)
(thermoStateInterp utilityID privcmd) ins2
(NS (State disabled temperature)

(trap (CMD (PR privcmd))))
(Out (State disabled temperature)

(trap (CMD (PR privcmd)))::outStream)) ⇐⇒
TR (M,Oi,Os) (trap (CMD (PR privcmd)))
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd)
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says
prop (CMD (PR privcmd))::ins)

(State disabled temperature) outStream)
(CFG isAuthenticated

(thermoStateInterp utilityID privcmd)
(certs ownerID utilityID cmd npriv privcmd) ins
(NS (State disabled temperature)

(trap (CMD (PR privcmd))))
(Out (State disabled temperature)

(trap (CMD (PR privcmd)))::outStream))

The last group of theorems for the networked thermostat are five equivalence theorems. For the cases of (1)
executing keyboarded commands by the Owner, (2) executing Owner command via the Server, (3) executing non-
privileged Utility commands via the Server, (4) executing privileged Utility commands via the Server, and (5) trapping
privileged commands via the Server, the theorems state that the top-level and refined SSM transitions are equivalent.
Figures 7.43, 7.44, 7.45, 7.46, and 7.47 have the five theorems.

77

Chapter 8

Conclusions

The objectives of certified security by design (CSBD) are to

1. give formally verified assurances that all commands are executed if and only if they authenticated and authorized,

2. assure a consistent and unified view of security across all levels of abstraction from high-level CONOPS down
to implementations, and

3. enable third parties to rapidly and easily reproduce all formally verified assurance results.

In this chapter we have provided a detailed outline and description of how to do this within a reusable and param-
eterized design and verification infrastructure consisting of:

1. an access-control logic and command-and-control (C2) calculus based on a multi-agent propositional modal
logic with Kripke semantics,

2. an algebraic model of cryptographic operations,

3. secure state-machine models integrating authentication, authorization, security interpretation, next-state, and
output functions as parameters in transition relations, and

4. implementations of all of the above as formally verified machine-checked theories in the HOL-4 (Higher Order
Logic) theorem prover.

As an illustration, we developed a networked thermostat that incorporated security into all design levels from high-
level models down to secure state-machines using specialized message and certificate structures. What is notable is
that most of the formal infrastructure is parameterized and reusable. As high-order logic is at the foundation of our
methods, we are able to achieve generality by parameterizing over functions such as next-state, output, authentication,
authorization, and interpretation functions. All of this leads to the conclusion that formal assurance of command-and-
control functions in the Internet of Things is feasible.

78

Appendix A

HOL Definition of ACL Syntax and Kripke
Structures

Form =
TT

| FF
| prop ’aavar
| notf ((’aavar, ’apn, ’il, ’sl) Form)
| (andf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (orf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (impf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (eqf) ((’aavar, ’apn, ’il, ’sl) Form)

((’aavar, ’apn, ’il, ’sl) Form)
| (says) (’apn Princ) ((’aavar, ’apn, ’il, ’sl) Form)
| (speaks_for) (’apn Princ) (’apn Princ)
| (controls) (’apn Princ) ((’aavar, ’apn, ’il, ’sl) Form)
| reps (’apn Princ) (’apn Princ)

((’aavar, ’apn, ’il, ’sl) Form)
| (domi) ((’apn, ’il) IntLevel) ((’apn, ’il) IntLevel)
| (eqi) ((’apn, ’il) IntLevel) ((’apn, ’il) IntLevel)
| (doms) ((’apn, ’sl) SecLevel) ((’apn, ’sl) SecLevel)
| (eqs) ((’apn, ’sl) SecLevel) ((’apn, ’sl) SecLevel)
| (eqn) num num
| (lte) num num
| (lt) num num

Kripke =
KS (’aavar -> ’aaworld -> bool)

(’apn -> ’aaworld -> ’aaworld -> bool) (’apn -> ’il)
(’apn -> ’sl)

Princ =
Name ’apn

| (meet) (’apn Princ) (’apn Princ)
| (quoting) (’apn Princ) (’apn Princ) ;

IntLevel = iLab ’il | il ’apn ;

SecLevel = sLab ’sl | sl ’apn

79

Appendix B

HOL Definition of ACL Semantics

The semantics or values of well-formed access-control logic formulas in HOL, is defined by Efn. The the values of
well-formed access-control logic formulas are sets of worlds that are members of the universe of worlds for a given
Kripke structure M.

[Efn_def]

` (∀Oi Os M. Efn Oi Os M TT = U(:’v)) ∧
(∀Oi Os M. Efn Oi Os M FF = { }) ∧
(∀Oi Os M p. Efn Oi Os M (prop p) = intpKS M p) ∧
(∀Oi Os M f.

Efn Oi Os M (notf f) = U(:’v) DIFF Efn Oi Os M f) ∧
(∀Oi Os M f1 f2.

Efn Oi Os M (f1 andf f2) =
Efn Oi Os M f1 ∩ Efn Oi Os M f2) ∧

(∀Oi Os M f1 f2.
Efn Oi Os M (f1 orf f2) =
Efn Oi Os M f1 ∪ Efn Oi Os M f2) ∧

(∀Oi Os M f1 f2.
Efn Oi Os M (f1 impf f2) =
U(:’v) DIFF Efn Oi Os M f1 ∪ Efn Oi Os M f2) ∧

(∀Oi Os M f1 f2.
Efn Oi Os M (f1 eqf f2) =
(U(:’v) DIFF Efn Oi Os M f1 ∪ Efn Oi Os M f2) ∩
(U(:’v) DIFF Efn Oi Os M f2 ∪ Efn Oi Os M f1)) ∧

(∀Oi Os M P f.
Efn Oi Os M (P says f) =
{w | Jext (jKS M) P w ⊆ Efn Oi Os M f }) ∧

(∀Oi Os M P Q.
Efn Oi Os M (P speaks_for Q) =
if Jext (jKS M) Q RSUBSET Jext (jKS M) P then U(:’v)
else { }) ∧

(∀Oi Os M P f.
Efn Oi Os M (P controls f) =
U(:’v) DIFF {w | Jext (jKS M) P w ⊆ Efn Oi Os M f } ∪
Efn Oi Os M f) ∧

(∀Oi Os M P Q f.
Efn Oi Os M (reps P Q f) =
U(:’v) DIFF
{w | Jext (jKS M) (P quoting Q) w ⊆ Efn Oi Os M f } ∪
{w | Jext (jKS M) Q w ⊆ Efn Oi Os M f }) ∧

(∀Oi Os M intl1 intl2.
Efn Oi Os M (intl1 domi intl2) =
if repPO Oi (Lifn M intl2) (Lifn M intl1) then U(:’v)
else { }) ∧

(∀Oi Os M intl2 intl1.
Efn Oi Os M (intl2 eqi intl1) =
(if repPO Oi (Lifn M intl2) (Lifn M intl1) then U(:’v)

else { }) ∩
if repPO Oi (Lifn M intl1) (Lifn M intl2) then U(:’v)

80

else { }) ∧
(∀Oi Os M secl1 secl2.

Efn Oi Os M (secl1 doms secl2) =
if repPO Os (Lsfn M secl2) (Lsfn M secl1) then U(:’v)
else { }) ∧

(∀Oi Os M secl2 secl1.
Efn Oi Os M (secl2 eqs secl1) =
(if repPO Os (Lsfn M secl2) (Lsfn M secl1) then U(:’v)

else { }) ∩
if repPO Os (Lsfn M secl1) (Lsfn M secl2) then U(:’v)
else { }) ∧

(∀Oi Os M numExp1 numExp2.
Efn Oi Os M (numExp1 eqn numExp2) =
if numExp1 = numExp2 then U(:’v) else { }) ∧

(∀Oi Os M numExp1 numExp2.
Efn Oi Os M (numExp1 lte numExp2) =
if numExp1 ≤ numExp2 then U(:’v) else { }) ∧

∀Oi Os M numExp1 numExp2.
Efn Oi Os M (numExp1 lt numExp2) =
if numExp1 < numExp2 then U(:’v) else { }

81

Appendix C

HOL Definition and Properties of Transition
Relation TR

C.1 HOL Source Code Defining TR

v a l (TR ru le s , TR ind , TR cases) =
H o l r e l n
‘ (! (i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l) (P : ’ p r i n c i p a l P r i n c)

(NS : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e) M Oi Os Out (s : ’ s t a t e)
(c e r t s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(s t a t e I n t e r p : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)

(cmd : ’ command) (i n s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(o u t s : ’ o u t p u t l i s t) .

(i n p u t T e s t ((P s a y s (prop (CMD cmd))) : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) /\
(C F G I n t e r p r e t (M, Oi , Os)

(CFG i n p u t T e s t s t a t e I n t e r p c e r t s (((P s a y s (prop (CMD cmd)))
: (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) : : i n s) s o u t s))) ==>

(TR
((M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke) , Oi : ’ d po , Os : ’ e po) (exec (CMD cmd))
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s (((P s a y s (prop (CMD cmd)))
: (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) : : i n s) s o u t s)
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s i n s (NS s (exec (CMD cmd))) ((Out s (exec (CMD cmd))) : : o u t s)))) /\

(! (i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l) (P : ’ p r i n c i p a l P r i n c)
(NS: ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e) M Oi Os Out (s : ’ s t a t e)
(c e r t s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(s t a t e I n t e r p : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)

(cmd : ’ command) (i n s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(o u t s : ’ o u t p u t l i s t) .

(i n p u t T e s t ((P s a y s (prop (CMD cmd))) : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) /\
(C F G I n t e r p r e t (M, Oi , Os)

(CFG i n p u t T e s t s t a t e I n t e r p c e r t s (((P s a y s (prop (CMD cmd)))
: (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) : : i n s) s o u t s))) ==>

(TR
((M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke) , Oi : ’ d po , Os : ’ e po) (t r a p (CMD cmd))
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s (((P s a y s (prop (CMD cmd)))
: (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) : : i n s) s o u t s)
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s i n s (NS s (t r a p (CMD cmd))) ((Out s (t r a p (CMD cmd))) : : o u t s)))) /\

(! (i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l) (NS: ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e)
M Oi Os (Out : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ o u t p u t) (s : ’ s t a t e)
(c e r t s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(s t a t e I n t e r p : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(cmd : ’ command) (x : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) (i n s : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form l i s t)
(o u t s : ’ o u t p u t l i s t) .

˜ i n p u t T e s t x ==>
(TR

((M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke) , Oi : ’ d po , Os : ’ e po) (d i s c a r d : ’ command i n s t t r T y p e)
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s ((x : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form) : : i n s) s o u t s)
(CFG i n p u t T e s t s t a t e I n t e r p c e r t s i n s (NS s d i s c a r d) ((Out s d i s c a r d) : : o u t s)))) ‘

C.2 Defining Properties of TR
[TR_rules]

` (∀ inputTest P NS M Oi Os Out s certs stateInterp cmd ins
outs.

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs) ⇒
TR (M,Oi,Os) (exec (CMD cmd))
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs)
(CFG inputTest stateInterp certs ins

(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs))) ∧

(∀ inputTest P NS M Oi Os Out s certs stateInterp cmd ins

82

outs.
inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs) ⇒
TR (M,Oi,Os) (trap (CMD cmd))
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs)
(CFG inputTest stateInterp certs ins

(NS s (trap (CMD cmd)))
(Out s (trap (CMD cmd))::outs))) ∧

∀ inputTest NS M Oi Os Out s certs stateInterp cmd x ins outs.
¬inputTest x ⇒
TR (M,Oi,Os) discard
(CFG inputTest stateInterp certs (x::ins) s outs)
(CFG inputTest stateInterp certs ins (NS s discard)

(Out s discard::outs))

[TR_ind]

` ∀TR′.
(∀ inputTest P NS M Oi Os Out s certs stateInterp cmd ins

outs.
inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ⇒

TR′ (M,Oi,Os) (exec (CMD cmd))
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs)
(CFG inputTest stateInterp certs ins

(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs))) ∧

(∀ inputTest P NS M Oi Os Out s certs stateInterp cmd ins
outs.

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ⇒

TR′ (M,Oi,Os) (trap (CMD cmd))
(CFG inputTest stateInterp certs

(P says prop (CMD cmd)::ins) s outs)
(CFG inputTest stateInterp certs ins

(NS s (trap (CMD cmd)))
(Out s (trap (CMD cmd))::outs))) ∧

(∀ inputTest NS M Oi Os Out s certs stateInterp cmd x ins
outs.
¬inputTest x ⇒
TR′ (M,Oi,Os) discard

(CFG inputTest stateInterp certs (x::ins) s outs)
(CFG inputTest stateInterp certs ins (NS s discard)

(Out s discard::outs))) ⇒
∀a0 a1 a2 a3. TR a0 a1 a2 a3 ⇒ TR′ a0 a1 a2 a3

[TR_cases]

` ∀a0 a1 a2 a3.
TR a0 a1 a2 a3 ⇐⇒
(∃ inputTest P NS M Oi Os Out s certs stateInterp cmd ins

83

outs.
(a0 = (M,Oi,Os)) ∧ (a1 = exec (CMD cmd)) ∧
(a2 =
CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ∧

(a3 =
CFG inputTest stateInterp certs ins
(NS s (exec (CMD cmd)))
(Out s (exec (CMD cmd))::outs)) ∧

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs)) ∨

(∃ inputTest P NS M Oi Os Out s certs stateInterp cmd ins
outs.

(a0 = (M,Oi,Os)) ∧ (a1 = trap (CMD cmd)) ∧
(a2 =
CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs) ∧

(a3 =
CFG inputTest stateInterp certs ins
(NS s (trap (CMD cmd)))
(Out s (trap (CMD cmd))::outs)) ∧

inputTest (P says prop (CMD cmd)) ∧
CFGInterpret (M,Oi,Os)

(CFG inputTest stateInterp certs
(P says prop (CMD cmd)::ins) s outs)) ∨

∃ inputTest NS M Oi Os Out s certs stateInterp cmd x ins
outs.

(a0 = (M,Oi,Os)) ∧ (a1 = discard) ∧
(a2 = CFG inputTest stateInterp certs (x::ins) s outs) ∧
(a3 =
CFG inputTest stateInterp certs ins (NS s discard)
(Out s discard::outs)) ∧ ¬inputTest x

84

Appendix D

HOL Definition and Properties of Transition
Relation TR2

D.1 HOL Source Code Defining TR2

v a l (TR2 ru le s , TR2 ind , TR2 cases) =
H o l r e l n
‘ (! (i n p u t I n t e r p r e t : ’ i n p u t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(c e r t I n t e r p r e t : ’ c e r t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l)
(x : ’ i n p u t)
(NS : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e)
(M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke)
(Oi : ’ d po)
(Os : ’ e po)
(Out : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ o u t p u t)
(s t a t e : ’ s t a t e)
(c e r t s : ’ c e r t l i s t)
(s t a t e I n t e r p r e t : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(cmd : ’ command)
(i n s : ’ i n p u t l i s t)
(o u t S t r e a m : ’ o u t p u t l i s t) .

(i n p u t T e s t (i n p u t I n t e r p r e t (x : ’ i n p u t))) /\
(C F G 2 I n t e r p r e t

(M, Oi , Os)
(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t

(x : : i n s) s t a t e o u t S t r e a m)) ==>
(TR2 (M, Oi , Os) (exec (CMD cmd))

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
(x : : i n s) s t a t e o u t S t r e a m)

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
i n s (NS s t a t e (exec (CMD cmd))) ((Out s t a t e (exec (CMD cmd))) : : o u t S t r e a m))))

/\
(! (i n p u t I n t e r p r e t : ’ i n p u t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)

(c e r t I n t e r p r e t : ’ c e r t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l)
(x : ’ i n p u t)
(NS : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e)
(M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke)
(Oi : ’ d po)
(Os : ’ e po)
(Out : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ o u t p u t)
(s t a t e : ’ s t a t e)
(c e r t s : ’ c e r t l i s t)
(s t a t e I n t e r p r e t : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(cmd : ’ command)
(i n s : ’ i n p u t l i s t)
(o u t S t r e a m : ’ o u t p u t l i s t) .

(i n p u t T e s t (i n p u t I n t e r p r e t (x : ’ i n p u t))) /\
(C F G 2 I n t e r p r e t

(M, Oi , Os)
(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t

(x : : i n s) s t a t e o u t S t r e a m)) ==>
(TR2 (M, Oi , Os) (t r a p (CMD cmd))

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
(x : : i n s) s t a t e o u t S t r e a m)

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
i n s (NS s t a t e (t r a p (CMD cmd))) ((Out s t a t e (t r a p (CMD cmd))) : : o u t S t r e a m))))

/\
(! (i n p u t I n t e r p r e t : ’ i n p u t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)

(c e r t I n t e r p r e t : ’ c e r t −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(i n p u t T e s t : (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form −> boo l)
(x : ’ i n p u t)
(NS : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ s t a t e)
(M: (’ command i n s t , ’ b , ’ p r i n c i p a l , ’ d , ’ e) Kr ipke)
(Oi : ’ d po)
(Os : ’ e po)
(Out : ’ s t a t e −> ’ command i n s t t r T y p e −> ’ o u t p u t)
(s t a t e : ’ s t a t e)
(c e r t s : ’ c e r t l i s t)
(s t a t e I n t e r p r e t : ’ s t a t e −> (’ command i n s t , ’ p r i n c i p a l , ’ d , ’ e) Form)
(cmd : ’ command)
(i n s : ’ i n p u t l i s t)
(o u t S t r e a m : ’ o u t p u t l i s t) .

˜ (i n p u t T e s t (i n p u t I n t e r p r e t (x : ’ i n p u t))) ==>
(TR2 (M, Oi , Os) d i s c a r d

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
(x : : i n s) s t a t e o u t S t r e a m)

(CFG2 i n p u t I n t e r p r e t c e r t I n t e r p r e t i n p u t T e s t c e r t s s t a t e I n t e r p r e t
i n s (NS s t a t e d i s c a r d) ((Out s t a t e d i s c a r d) : : o u t S t r e a m)))) ‘

85

D.2 Defining Properties of TR2
[TR2_rules]

` (∀ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇒
TR2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream))) ∧

(∀ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ⇒
TR2 (M,Oi,Os) (trap (CMD cmd))
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (trap (CMD cmd)))
(Out state (trap (CMD cmd))::outStream))) ∧

∀ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.
¬inputTest (inputInterpret x) ⇒
TR2 (M,Oi,Os) discard

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret ins (NS state discard)
(Out state discard::outStream))

[TR2_ind]

` ∀TR′2.
(∀ inputInterpret certInterpret inputTest x NS M Oi Os Out

state certs stateInterpret cmd ins outStream.
inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream) ⇒

TR′2 (M,Oi,Os) (exec (CMD cmd))
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream))) ∧

(∀ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream) ⇒

86

TR′2 (M,Oi,Os) (trap (CMD cmd))
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream)
(CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (trap (CMD cmd)))
(Out state (trap (CMD cmd))::outStream))) ∧

(∀ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.
¬inputTest (inputInterpret x) ⇒
TR′2 (M,Oi,Os) discard

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret ins (NS state discard)
(Out state discard::outStream))) ⇒

∀a0 a1 a2 a3. TR2 a0 a1 a2 a3 ⇒ TR′2 a0 a1 a2 a3

[TR2_cases]

` ∀a0 a1 a2 a3.
TR2 a0 a1 a2 a3 ⇐⇒
(∃ inputInterpret certInterpret inputTest x NS M Oi Os Out

state certs stateInterpret cmd ins outStream.
(a0 = (M,Oi,Os)) ∧ (a1 = exec (CMD cmd)) ∧
(a2 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ∧
(a3 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (exec (CMD cmd)))
(Out state (exec (CMD cmd))::outStream)) ∧

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)) ∨

(∃ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.

(a0 = (M,Oi,Os)) ∧ (a1 = trap (CMD cmd)) ∧
(a2 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ∧
(a3 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state (trap (CMD cmd)))
(Out state (trap (CMD cmd))::outStream)) ∧

inputTest (inputInterpret x) ∧
CFG2Interpret (M,Oi,Os)

(CFG2 inputInterpret certInterpret inputTest certs
stateInterpret (x::ins) state outStream)) ∨

∃ inputInterpret certInterpret inputTest x NS M Oi Os Out
state certs stateInterpret cmd ins outStream.

(a0 = (M,Oi,Os)) ∧ (a1 = discard) ∧
(a2 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret (x::ins) state outStream) ∧
(a3 =
CFG2 inputInterpret certInterpret inputTest certs

stateInterpret ins (NS state discard)
(Out state discard::outStream)) ∧

87

¬inputTest (inputInterpret x)

88

Appendix E

HOL Definition of isAuthenticated

[isAuthenticated_def]

` (isAuthenticated
(Name Keyboard quoting Name (Owner ownerID) says
prop (CMD cmd)) ⇐⇒ T) ∧

(isAuthenticated
(Name (Key (pubK Server)) quoting
Name (Owner ownerID) says prop (CMD cmd)) ⇐⇒ T) ∧

(isAuthenticated
(Name (Key (pubK Server)) quoting
Name (Role (Utility utilityID)) says prop (CMD cmd)) ⇐⇒

T) ∧ (isAuthenticated TT ⇐⇒ F) ∧ (isAuthenticated FF ⇐⇒ F) ∧
(isAuthenticated (prop v) ⇐⇒ F) ∧
(isAuthenticated (notf v1) ⇐⇒ F) ∧
(isAuthenticated (v2 andf v3) ⇐⇒ F) ∧
(isAuthenticated (v4 orf v5) ⇐⇒ F) ∧
(isAuthenticated (v6 impf v7) ⇐⇒ F) ∧
(isAuthenticated (v8 eqf v9) ⇐⇒ F) ∧
(isAuthenticated (v10 says TT) ⇐⇒ F) ∧
(isAuthenticated (v10 says FF) ⇐⇒ F) ∧
(isAuthenticated (Name v132 says prop v66) ⇐⇒ F) ∧
(isAuthenticated (v133 meet v134 says prop v66) ⇐⇒ F) ∧
(isAuthenticated

(Name (Role v174) quoting Name (Role v164) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key v175) quoting Name (Role CA) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key v175) quoting Name (Role Server) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (pubK CA)) quoting
Name (Role (Utility v184)) says prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (pubK (Utility v190))) quoting
Name (Role (Utility v184)) says prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (privK v187)) quoting
Name (Role (Utility v184)) says prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name Keyboard quoting Name (Role v164) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Owner v176) quoting Name (Role v164) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Account v177 v178) quoting Name (Role v164) says

89

prop (CMD v142)) ⇐⇒ F) ∧
(isAuthenticated

(Name v154 quoting Name (Key v165) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name v154 quoting Name Keyboard says prop (CMD v142)) ⇐⇒

F) ∧
(isAuthenticated

(Name (Role v192) quoting Name (Owner v166) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (pubK CA)) quoting Name (Owner v166) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (pubK (Utility v206))) quoting
Name (Owner v166) says prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Key (privK v203)) quoting Name (Owner v166) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Owner v194) quoting Name (Owner v166) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name (Account v195 v196) quoting Name (Owner v166) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(Name v154 quoting Name (Account v167 v168) says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(v155 meet v156 quoting Name v144 says prop (CMD v142)) ⇐⇒

F) ∧
(isAuthenticated

((v157 quoting v158) quoting Name v144 says
prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(v135 quoting v145 meet v146 says prop (CMD v142)) ⇐⇒ F) ∧

(isAuthenticated
(v135 quoting v147 quoting v148 says prop (CMD v142)) ⇐⇒

F) ∧
(isAuthenticated (v135 quoting v136 says prop TRAP) ⇐⇒ F) ∧
(isAuthenticated (v10 says notf v67) ⇐⇒ F) ∧
(isAuthenticated (v10 says (v68 andf v69)) ⇐⇒ F) ∧
(isAuthenticated (v10 says (v70 orf v71)) ⇐⇒ F) ∧
(isAuthenticated (v10 says (v72 impf v73)) ⇐⇒ F) ∧
(isAuthenticated (v10 says (v74 eqf v75)) ⇐⇒ F) ∧
(isAuthenticated (v10 says v76 says v77) ⇐⇒ F) ∧
(isAuthenticated (v10 says v78 speaks_for v79) ⇐⇒ F) ∧
(isAuthenticated (v10 says v80 controls v81) ⇐⇒ F) ∧
(isAuthenticated (v10 says reps v82 v83 v84) ⇐⇒ F) ∧
(isAuthenticated (v10 says v85 domi v86) ⇐⇒ F) ∧
(isAuthenticated (v10 says v87 eqi v88) ⇐⇒ F) ∧
(isAuthenticated (v10 says v89 doms v90) ⇐⇒ F) ∧
(isAuthenticated (v10 says v91 eqs v92) ⇐⇒ F) ∧
(isAuthenticated (v10 says v93 eqn v94) ⇐⇒ F) ∧
(isAuthenticated (v10 says v95 lte v96) ⇐⇒ F) ∧
(isAuthenticated (v10 says v97 lt v98) ⇐⇒ F) ∧
(isAuthenticated (v12 speaks_for v13) ⇐⇒ F) ∧
(isAuthenticated (v14 controls v15) ⇐⇒ F) ∧

90

(isAuthenticated (reps v16 v17 v18) ⇐⇒ F) ∧
(isAuthenticated (v19 domi v20) ⇐⇒ F) ∧
(isAuthenticated (v21 eqi v22) ⇐⇒ F) ∧
(isAuthenticated (v23 doms v24) ⇐⇒ F) ∧
(isAuthenticated (v25 eqs v26) ⇐⇒ F) ∧
(isAuthenticated (v27 eqn v28) ⇐⇒ F) ∧
(isAuthenticated (v29 lte v30) ⇐⇒ F) ∧
(isAuthenticated (v31 lt v32) ⇐⇒ F)

91

Bibliography

[1] IEEE Guide for Information Technology–System Definition–Concept of Operations (ConOps) Document, 19
March 1998. IEEE Computer Society, IEEE Std 1362-1998.

[2] JP 5-0, Joint Operation Planning, 11 August 2011. US Dept of Defense.

[3] Cyber-Assurance for the Internet of Things. IEEE Press/Wiley, 2017.

[4] ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. A calculus for access control in distributed
systems. ACM Transactions on Programming Languages and Systems 15, 4 (September 1993), 706–734.

[5] BELL, D. E., AND LA PADULA, L. J. Secure computer systems: Mathematical foundations. Tech. Rep.
Technical Report MTR-2547, Vol. I, MITRE Corporation, Bedford, MA, March 1973.

[6] BELL, D. E., AND LA PADULA, L. J. Secure computer system: Unified exposition and Multics interpretation.
Tech. Rep. MTR-2997 Rev. 1, MITRE Corporation, Bedford, MA, March 1975.

[7] BIBA, K. Integrity considerations for secure computer systems. Tech. Rep. MTR-3153, MITRE Corporation,
Bedford, MA, June 1975.

[8] CHIN, S.-K., AND OLDER, S. Access Control, Security, and Trust: A Logical Approach. CRC Press/Taylor
Francis, 2011.

[9] CONWAY, L. Reminiscences of the vlsi revolution: How a series of failures triggered a paradigm shift in digital
design. IEEE Solid-State Circuits Magazine 4, 4 (Fall 2012), 8–31.

[10] FERRAIOLO, D., AND KUHN, R. Role-Based Access Control. In 15th NIST-NCSC National Computer Security
Conference (Gaithersburg, MD, 1992), pp. 554–563.

[11] GORDON, M., AND MELHAM, T. Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press, New York, 1993.

[12] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for virtualizable third generation architectures.
Communications of the ACM 17, 7 (July 1974), 412–421.

[13] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. Role-based access control models.
IEEE Computer 29, 2 (February 1996), 38–47.

92

	Introduction
	Lessons from the Microelectronics Revolution
	Certified Security by Design
	Concepts of Operations
	A Networked Thermostat as a Motivating Example
	Assurance Requirements

	Report Outline

	An Access-Control Logic
	Syntax
	Semantics
	Inference Rules
	Describing Access-Control Concepts in the C2 Calculus

	An Introduction to HOL
	The Access-Control Logic in HOL
	Syntax of the Access-Control Logic in HOL
	Semantics of the Access-Control Logic in HOL
	C2 Inference Rules in HOL

	Cryptographic Components and Their Models in Higher Order Logic
	Symmetric-Key Cryptography
	Cryptographic Hash Functions
	Asymmetric-Key Cryptography
	Digital Signatures

	Adding Security to State Machines
	Instructions and Transition Types
	High-Level Secure State-Machine Description
	Secure State-Machines Using Message and Certificate Structures

	A Networked Thermostat Certified Secure by Design
	Thermostat Commands: Privileged and Non-Privileged
	Thermostat Principals and Their Privileges
	Thermostat Use Cases
	Security Contexts for the Server and Thermostat
	Top-Level Thermostat Secure State-Machine
	Refined Thermostat Secure State-Machine
	Equivalence of Top-Level and Refined Secure State-Machines

	Conclusions
	HOL Definition of ACL Syntax and Kripke Structures
	HOL Definition of ACL Semantics
	HOL Definition and Properties of Transition Relation TR
	HOL Source Code Defining TR
	Defining Properties of TR

	HOL Definition and Properties of Transition Relation TR2
	HOL Source Code Defining TR2
	Defining Properties of TR2

	HOL Definition of isAuthenticated

