
1

A Logical Approach to Access Control, Security,
and Trust

Shiu-Kai Chin and Susan Older
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, New York 13244
http://www.ecs.syr.edu/faculty/chin http://www.cis.syr.edu/∼sueo

ABSTRACT

Designers, auditors, and certifiers of trustworthy systems
must rigorously assess compliance with security policies.
Because security is best built into systems at all levels of ab-
straction, engineers and other practitioners who design, verify,
or certify trustworthy systems need the capability to reason rig-
orously about security policies in general, and access decisions
in particular. What is required is a logic or calculus general
enough to be useful from the concrete hardware level to the
abstract policy level that also captures access-control concepts
such as authorization, certified statements, jurisdiction, and
delegation. Ideally, this calculus should be straightforward for
practitioners to use, much like the propositional logic used in
hardware design by engineers. We have created an access-
control logic that meets these requirements and have used
this logic to account for security, trust, and access policies in
hardware, software, protocols, and concepts of operations. We
give an overview of the logic and its application to hardware,
protocols, and policy.

Keywords: access control, security, trust, logic.

I. INTRODUCTION

The need for trusted information systems is ever growing.
Concurrent with this increasing need are the challenges of
assuring the trustworthiness of systems at a time when systems
are growing ever more interconnected and complex.

The principles of building trusted systems remain the same
[10][4]:
• complete mediation: all accesses to objects must be

checked to ensure they are allowed,
• least privilege: grant only the capabilities necessary to

compete the specified task, and
• economy of mechanism: security mechanisms should be

as simple as possible.
Nevertheless, rigorously assessing that any given access re-
quest is allowed, that principals have the access rights required,
and that mechanisms are specified and implemented correctly
remains daunting. How will designers, verifiers, and certifiers
of hardware, firmware, software, and protocols understand pre-
cisely and accurately policy statements and assure themselves
of compliance?

The left side of Figure 1 shows what is expected of hardware
engineers: when given a hardware design, the primary inputs,
and the values in the registers, hardware engineers derive

Fig. 1: Rigorous derivation of behavior

the value of signals anywhere in the integrated circuit using
logic. The right side of Figure 1 shows what is expected of
engineers designing secure systems: when given (1) a request
to access a protected resource, (2) an access policy, and
(3) assumptions about whose authority is trusted and their
jurisdiction, engineers should be able to derive whether or
not the reference monitor protecting the resource should allow
access to the resource.

Hardware designers routinely do what is expected because
logic is at the foundation of hardware design. Engineers of
secure systems do not have the benefit of a similar logic.
Hence, verification of security does not meet the same standard
as verification of functional correctness in computer hardware.

Our objective is to enable designers, verifiers, and certifiers
to rigorously reason about access control, security, and trust
and to do so at the concrete hardware level up through the
abstract level of security policies and concept of operations.
We have devised an access-control logic that is straightforward
for practitioners to learn and apply broadly. This logic is based
on a logic in [1]. We have both simplified and extended [1]
by substituting delegation for roles and adding the semantics
for partially ordered confidentiality and integrity labels and
levels. We have used this logic to describe a wide variety of
access-control applications including role-based access con-
trol (RBAC) [8] and delegation in electronic retail payment
systems [6].

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of the syntax, semantics, and infer-
ence rules of the logic. Section III is an example of mandatory
access control at the physical memory level. Section IV
provides a delegation example. Section V describes how the
syntax and semantics of the logic are extended to accommo-
date security levels and labels. Section VI is an example of
information confidentiality. We conclude in Section VII.

2

II. OVERVIEW OF THE ACCESS CONTROL LOGIC

A. Syntax and Semantics

Syntax of Principal Expressions: Principals are the actors
in a system, such as people, processes, cryptographic keys,
personal identification numbers (PINs), userid–password pairs,
and so on. Principals are either simple or compound. PName is
the collection of all simple principal names, which can be used
to refer to any simple principal. For example, the following are
all allowable principal names: Alice, Bob, the key KAlice , the
PIN 1234, and the userid–password pair 〈alice, bAdPsWd!〉.

Compound principals are abstract entities that connote a
combination of principals: for example, “the President in
conjunction with Congress” connotes an abstract principal
comprising both the President and Congress. Intuitively, such a
principal makes exactly those statements that are made by both
the President and Congress. Similarly, “the reporter quoting
her source” connotes an abstract principal that comprises both
the reporter and her source. Intuitively, a statement made by
such a principal represents a statement that the reporter is
(rightly or wrongly) attributing to his source.

The set Princ of all principal expressions is given by the
following BNF specification:

Princ ::= PName / Princ & Princ / Princ | Princ

That is, a principal expression is either a simple name, an
expression of form P & Q (where P and Q are both principal
expressions), or an expression of form P | Q (where, again,
P and Q are both principal expressions).

Syntax of Logical Formulas: The abstract syntax of log-
ical formulas Form are constructed from the set of principal
names and a countable set of propositional variables PropVar:

Form ::= PropVar / ¬ Form /

(Form ∨ Form) / (Form ∧ Form) /

(Form ⊃ Form) / (Form ≡ Form) /

(Princ⇒ Princ) / (Princ says Form) /

(Princ controls Form) / Princ reps Princ on Form

The first six cases deal with standard propositional logic:
propositional variables, negation, conjunction, disjunction, im-
plication, and equivalence. The remaining four cases are
specific to access control.

1) P says ϕ asserts that principal P made the statement ϕ.
2) P ⇒ Q (pronounced “P speaks for Q”) indicates that

every statement made by P can also be viewed as a
statement from Q.

3) P controls ϕ represents authority or trust. It is syntactic
sugar for the implication (P says ϕ) ⊃ ϕ. P is a trusted
authority with respect to the statement ϕ.

4) P reps Q on ϕ represents delegation. It is syntactic sugar
for (P | Q says ϕ) ⊃ (Q says ϕ). P is a trusted authority
on what Q says regarding ϕ.

Semantics: The semantics of formulas is given via Kripke
structures, as follows.

Definition: A Kripke structure M is a three-tuple 〈W, I, J〉,
where:

• W is a nonempty set, whose elements are called worlds.
• I : PropVar → P(W) is an interpretation function that

maps each propositional variable p to a set of worlds.
• J : PName→ P(W ×W) is a function that maps each

principal name A into a relation on worlds (i.e., a subset
of W ×W).

Given the above, we define the extended function Ĵ : Princ→
P(W ×W) inductively on the structure of principal expres-
sions, where A ∈ PName.

Ĵ(A) = J(A)
Ĵ(P & Q) = Ĵ(P) ∪ Ĵ(Q)
Ĵ(P | Q) = Ĵ(P) ◦ Ĵ(Q).

Note: R1 ◦R2 = {(x, z) | ∃y.(x, y) ∈ R1 and (y, z) ∈ R2}. �

Definition: Each Kripke structure M = 〈W, I, J〉 gives rise
to a semantic function

EM[[−]] : Form→ P(W),

where EM[[ϕ]] is the set of worlds in which ϕ is considered
true. EM[[ϕ]] is defined inductively on the structure of ϕ, as
follows:

EM[[p]] = I(p)
EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]
EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]
EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]
EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W, if Ĵ(Q) ⊆ Ĵ(P)
∅, otherwise

EM[[P says ϕ]] = {w|Ĵ(P)(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]
EM[[P reps Q on ϕ]] = EM[[(P | Q says ϕ) ⊃ Q says ϕ]]

Note that, in the definition of EM[[P says ϕ]], Ĵ(P)(w) is
simply the image of world w under the relation Ĵ(P). �

The semantic functions EM provide a fully defined and fully
disclosed interpretation for the formulas of the logic. These
functions precisely define the meaning of statements and what
is described in the logic.

In practice, reasoning at the level of Kripke structures is
cumbersome. Instead, we use logical rules to reason about
access control.

B. Logical Rules

Logical rules in our access-control logic have the form

H1 · · · Hk

C,

where H1 · · ·Hk and C are formulas in the logic. H1 · · ·Hk

are the hypotheses or premises and C is the consequence or
conclusion. Informally, we read logical rules as “if all the
hypotheses above the line are true, then the conclusion below

3

Taut
ϕ

if ϕ is an instance of a prop-
logic tautology Modus Ponens

ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

& Says
(P & Q says ϕ) ≡ ((P says ϕ) ∧ (Q says ϕ))

Quoting
(P | Q says ϕ) ≡ (P says Q says ϕ)

Idempotency of ⇒
P ⇒ P

Transitivity
of ⇒

P ⇒ Q Q⇒ R

P ⇒ R

Monotonicity
of ⇒

P ⇒ P ′ Q⇒ Q′

P | Q⇒ P ′ | Q′

Equivalence
ϕ1 ≡ ϕ2 ψ[ϕ1/q]

ψ[ϕ2/q]
P controls ϕ

def
= (P says ϕ) ⊃ ϕ P reps Q on ϕ

def
= (P | Q says ϕ) ⊃ Q says ϕ

Fig. 2: Core logical rules for the access-control logic

the line is also true.” If there are no hypotheses, then the logical
rule is an axiom.

Logical rules are used to manipulate well-formed formulas
of the logic. If all the hypotheses of a rule are written
down (derived) then the conclusion of the rule also can be
written down (derived). All logical rules must maintain logical
consistency. If all logical rules are sound, as defined below,
then logical consistency is assured.

Definition: A logical rule

H1 · · · Hk

C,

is sound if, for all Kripke structuresM, wheneverM satisfies
all the hypotheses H1 · · ·Hk, then M also satisfies C. �

Figure 2 shows the core logical rules for the logic. All the
rules are proved sound with respect to the Kripke semantics.
Figure 3 shows three useful derived rules, which are proved
using the core rules.

III. HARDWARE EXAMPLE

Figure 4 contains a block diagram of a simple virtual ma-
chine (VM) with an instruction register IR and an accumulator
ACC. Instructions from VM are monitored by the virtual
machine monitor (VMM). VMM has a memory access register
(MAR) pointing to a real address in physical memory and a
relocation register (RR) specifying the base address of the
memory segment being accessed in physical memory and the
segment’s bound (number of memory locations). The physical
memory shown has q memory locations (0 through q−1). The
memory has three segments, corresponding to Alice, Bob, and
Carol. Alice’s segment starts at physical address baseAlice and
ends at baseAlice + boundAlice − 1.

Values in registers are described in the logic as statements
made by registers. For example, suppose the value loaded in
IR is the instruction LDA @A (i.e., load ACC with the value
in virtual address A in physical memory). From an access-
control perspective, the question is whether this instruction
should be executed or trapped by VMM, which mediates all
access requests to physical memory.

VMM grants access if (1) the virtual address A is less than
or equal to bound and, (2) base + A < q (i.e., the physical
address corresponding to A is within the physical memory
address limit). Otherwise, the instruction is trapped by VMM
and control is turned over to the supervisor.

The decision to grant or deny (trap) request LDA @A
depends on the state of VM and VMM and the mandatory
access control (MAC) policy governing access to physical
memory. The state of the machine (VM and VMM) is given
by the register values. The registers used to decide access are
IR and RR; ACC and MAR are not used. The states of IR and
RR are given by:

IR says 〈LDA @A〉 and RR says 〈(baseAlice, boundAlice)〉,

where 〈LDA @A〉 and 〈(baseAlice, boundAlice)〉 denote “it is
a good idea to execute LDA @A” and “the value is in fact
(baseAlice, boundAlice).”

The request to execute LDA @A is trapped when either the
real address baseAlice + A is greater or equal to q (i.e., the
size of physical memory), or the virtual address A exceeds
the segment bound boundAlice. This policy is expressed as
follows:

IR says 〈LDA @A〉 ⊃ (RR says 〈(baseAlice, boundAlice)〉 ⊃
(((baseAlice + A ≥ q) ∨ (A ≥ boundAlice)) ⊃ 〈trap〉)),

where 〈trap〉 denotes “it is a good idea to trap.”
The request to execute LDA @A is granted if virtual address

A falls within the bound of real memory and the segment. This
is expressed as follows:

IR says 〈LDA @A〉 ⊃ (RR says 〈(baseAlice, boundAlice)〉 ⊃
((baseAlice + A < q) ⊃ ((A < boundAlice) ⊃ 〈LDA @A〉))).

Figure 5 gives a simple proof justifying granting execution
for the instruction LDA @5 (loading the accumulator with
the contents of address 5 in the active segment), where the
base address of the segment is 8, the segment bound is
16, and the size of physical memory is 16. Lines 1–3 are
the starting assumptions: the instruction request, the state of
the relocation register RR, and the mandatory access control

4

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ
Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Fig. 3: Derived rules

Fig. 4: Virtual Machine and Virtual Machine Monitor

1. IR says 〈LDA @5〉 request
2. RR says 〈(8, 16)〉 RR value
3. IR says 〈LDA @5〉 ⊃ mandatory access policy

(RR says 〈(8, 16)〉 ⊃
((8 + 5 < 32) ⊃
((5 < 16) ⊃ 〈LDA @5〉)))

4. RR says 〈(8, 16)〉 ⊃ 1,3 Modus Ponens
((8 + 5 < 32) ⊃
((5 < 16) ⊃ 〈LDA @5〉))

5. (8 + 5 < 32) ⊃ 2,4 Modus Ponens
((5 < 16) ⊃ 〈LDA @5〉))

6. 8 + 5 < 32 Taut
7. (5 < 16) ⊃ 〈LDA @5〉 6, 5 Modus Ponens
8. 5 < 16 Taut
9. 〈LDA @5〉 8, 7 Modus Ponens

Fig. 5: Hardware proof

policy for the specific memory segment and physical memory.
The remaining lines are derived by applying the Modus Ponens
and Taut inference rules in Figure 2. The proof gives us a
theorem in the form of a derived inference rule:

IR says 〈LDA @5〉 RR says 〈(8, 16)〉
IR says 〈LDA @5〉 ⊃ (RR says 〈(8, 16)〉 ⊃ ((8 + 5 < 32) ⊃

((5 < 16) ⊃ 〈LDA @5〉)))
〈LDA @5〉.

The above rule describes the behavior of VMM as a sound
inference rule.

IV. DELEGATION EXAMPLE

Delegation, whereby representatives are given authority to
act on behalf of others, is a crucial capability to capture
in the logic. Delegation is used extensively in electronic
networks as the principals originating transactions rarely, if
ever, interact directly with resources they are seeking to access.
Usually, access is accomplished using an intermediary process
or delegation.

To illustrate how delegation works, consider a simplified
health-care proxy where Bob is Alice’s delegate in case Alice
is in a coma. Alice’s wishes are to not be resuscitated if she

1. SAlice says Medical proxy
(Bob reps Alice on (coma ⊃ dnr))

2. Alice controls (coma ⊃ dnr) Policy
3. Alice controls Policy

(Bob reps Alice on (coma ⊃ dnr))
4. SAlice ⇒ Alice Trust assumption
5. coma Alice’s medical condition
6. Bob says (Alice says (coma ⊃ dnr)) Bob’s statement
7. Alice says 4,1 Derived Speaks For

(Bob reps Alice on (coma ⊃ dnr))
8. Bob reps Alice on (coma ⊃ dnr) 3, 7 Controls
9. Bob says (Alice says (coma ⊃ dnr)) Quoting

≡ Bob | Alice says (coma ⊃ dnr)
10. Bob | Alice says (coma ⊃ dnr) 9, 6 Equivalence
11. coma ⊃ dnr 2, 8, 10 reps
12. dnr 5, 11 Modus Ponens

Fig. 6: Delegation proof

is in a coma, which is represented by the formula

coma ⊃ dnr,

where coma and dnr respectively denote Alice being in a
coma and her desire not to be resuscitated.

If Alice is in a coma, she is unable to speak for herself.
Alice designates Bob to be her delegate to say coma ⊃ dnr,
when she cannot. She puts it in writing and signs it with her
signature SAlice. The signed statement is formulated as:

SAlice says (Bob reps Alice on (coma ⊃ dnr)).

Hospital policies must be aligned with Alice’s if her wishes
are to be honored. Also, her signature must be recognized
as hers. Two policy statements regarding Alice’s authority or
jurisdiction are required along with a trust assumption. They
are:

1) Alice’s wishes when she is in a coma count (i.e., she has
jurisdiction in this case): Alice controls (coma ⊃ dnr).

2) Alice has authority to designate Bob as her delegate to
say on her behalf not to be resuscitated if she is in a
coma: Alice controls (Bob reps Alice on (coma ⊃ dnr)).

3) Alice’s signature is recognized: SAlice ⇒ Alice.

In the unfortunate event that Alice lapses into a coma and
Bob says Alice does not wish to be revived in this event,
the behavior of Alice’s hospital is expressed by the following
derived inference rule and theorem:

SAlice says (Bob reps Alice on (coma ⊃ dnr))
Alice controls (coma ⊃ dnr)

Alice controls (Bob reps Alice on (coma ⊃ dnr))
SAlice ⇒ Alice

coma Bob says (Alice says (coma ⊃ dnr))
dnr.

The soundness of the above behavior is proved in Figure 6.

5

V. ADDING SECURITY LEVELS

Confidentiality access policies are common in the mil-
itary and also in industry. Most models use a par-
tial ordering of confidentiality levels to which secu-
rity labels and and clearances are assigned. A com-
mon set of confidentiality levels and associated la-
bels are {unclassified , confidential , secret , top secret} and
{U,C,S,TS}. The labels are what is stamped on documents,
their interpretation is the mapping to confidentiality levels.
The partial ordering of levels typically forms a lattice. In this
section we outline how confidentiality levels are added to the
syntax and semantics of the access-control logic. The same
approach is use to add other kinds of levels and partial orders,
such as those for grading integrity or availability.

Syntax: The first step is to introduce syntax for describing
and comparing security levels. SecLabel is the collection
of simple security labels, which are used as names for the
confidentiality levels (e.g., TS, S, C, and U).

Often, we refer abstractly to a principal P ’s security level.
We define the larger set SecLevel of all possible security-level
expressions:

SecLevel ::= SecLabel / slev(PName).

A security-level expression is either a simple security label
or an expression of the form slev(A), where A is a simple
principal name. Informally, slev(A) refers to the security level
of principal A.

Finally, we extend our definition of well-formed formulas
to support comparisons of security levels:

Form ::= SecLevel ≤s SecLevel / SecLevel =s SecLevel

Informally, a formula such as C ≤s slev(Kate) states that
Kate’s security level is greater than or equal to the secu-
rity level C. Similarly, a formula such as slev(Barry) =s

slev(Joe) states that Barry and Joe have been assigned the
same security level.

Semantics: Providing formal and precise meanings for
the newly added syntax requires us to first extend our Kripke
structures with additional components that describe secu-
rity classification levels. Specifically, we introduce extended
Kripke structures of the form

M = 〈W, I, J, K,L,�〉,

where:
• W , I , and J are as defined earlier.
• K is a non-empty set, which serves as the universe of

security levels.
• L : (SecLabel ∪ PName) → K is a function that maps

each security label and each simple principal name to
a security level. L is extended to work over arbitrary
security-level expressions, as follows:

L(slev(A)) = L(A),

for every simple principal name A.
• �⊆ K×K is a partial order on K: that is, � is reflexive

(for all k ∈ K, k � k), transitive (for all k1, k2, k3 ∈

`1 =s `2
def= (`1 ≤s `2) ∧ (`2 ≤s `1)

Reflexivity of ≤s
` ≤s `

Transitivity of ≤s
`1 ≤s `2 `2 ≤s `3

`1 ≤s `3

sl ≤s
slev(P) =s `1 slev(Q) =s `s `1 ≤s `2

slev(P) ≤s slev(Q)
Fig. 7: Inference rules for relating security levels

K, if k1 � k2 and k2 � k3, then k1 � k3), and anti-
symmetric (for all k1, k2 ∈ K, if k1 � k2 and k2 � k1,
then k1 = k2).

Using these extended Kripke structures, we extend the
semantics for our new well-formed expressions as follows:

EM[[`1 ≤s `2]] =

{
W, if L(`1) � L(`2)
∅, otherwise

EM[[`1 =s `2]] = EM[[`1 ≤s `2]] ∩ EM[[`2 ≤s `1]].

As these definitions suggest, the expression `1 =s `2 is simply
syntactic sugar for (`1 ≤s `2) ∧ (`2 ≤s `1).

Logical Rules: Based on the extended Kripke semantics
we introduce logical rules that support the use of security lev-
els to reason about access requests. Specifically, the definition,
reflexivity, and transitivity rules in Figure 7 reflect that ≤s is
a partial order. The fourth rule is derived and convenient to
have.

VI. INFORMATION SECURITY EXAMPLE

The example confidentiality policy we describe is a sim-
plified form of the Bell-LaPadula policy [2], [3]. The policy
is based on the notion of controlling information flow based
on classification level. For example, information classified
as secret should only be read by principals whose security
clearance is at least at the secret level. This restriction,
known as the simple security condition, prevents leaking of
information by preventing information at one classification
level being read by people and processes at lower levels.

Another way information is leaked is when principals at
one classification level write files at lower classification levels.
For example, principals at the secret level are only allowed
to write files at the secret level or higher. This is known as
the *-property. We describe both these restrictions below and
formalize them in the logic.

Simple Security Condition: P can read O if and only if:
1) P ’s security level is at least as high as O’s (i.e.,

slev(O) ≤s slev(P)), and
2) P has discretionary read access to O (i.e.,

P controls 〈read , O〉).
This policy reflects the thinking that people or processes
should have read access to information at their security level
or below, provided they need to know. The first condition,
slev(O) ≤s slev(P) reflects the condition that P can read
O provided it is at P ’s security level or below. The second

6

1. S ≤s TS Ordering on labels
2. slev(Alice) =s TS Alice’s clearance
3. slev(foo) =s S foo’s classification
4. (slev(foo) ≤s slev(Alice)) ⊃ Simple security condition

(Alice controls 〈read , foo〉)
5. Alice says 〈read , foo〉 Alice’s request
6. slev(foo) ≤s slev(Alice) 2, 3, 1 sl ≤s

7. Alice controls 〈read , foo〉) 6, 4 Modus Ponens
8. 〈read , foo〉 7, 5 Controls

Fig. 8: Security proof

condition—that P has discretionary read access to O—reflects
P ’s need to know (i.e., some controlling authority has granted
P read access to O, provided P has sufficient clearance). We
express this policy as:

(slev(O) ≤s slev(P)) ⊃ (P controls 〈read , O〉).

*-Property: P can write file O if and only if:
1) O’s security level is at least as high as P ’s (i.e.,

slev(P) ≤s slev(O)), and
2) P has discretionary write access to O (i.e.,

P controls 〈write, O〉).
Restricting write access to files at or above a principal’s

clearance level means that information flow that occurs by
virtue of writing files can only occur at the same level or go
upwards. We express the *-property as follows:

(slev(P) ≤s slev(O)) ⊃ (P controls 〈write, O〉).

Example: Suppose Alice’s security level is TS, file foo’s
level is S, and the ordering on security labels is U ≤s

C ≤s S ≤s TS. Under the Bell-LaPadula policy, if Alice has
discretionary access to foo then she should be able to read
foo, which we denote by 〈read , foo〉. The desired behavior is
given by the following derived inference rule or theorem.

S ≤s TS slev(Alice) =s TS slev(foo) =s S
(slev(foo) ≤s slev(Alice)) ⊃ (Alice controls 〈read , foo〉)

Alice says 〈read , foo〉
〈read , foo〉.

The soundness of the above behavior is proved in Figure 8.

VII. CONCLUSION

The logic we described here captures access-control con-
cepts such as authorization, delegation, jurisdiction, trust, and
partial orderings on confidentiality, integrity, and availability
labels. Our examples show that the logic is straightforward to
apply at a variety of abstraction levels spanning the lowest
level of hardware (e.g., control of physical memory) to the
abstract level of security policies (e.g., Bell-LaPadula). This
logic enables engineers in the roles of designers, verifiers, and
certifiers to reason rigorously about access control, security,
delegation, and trust in a straightforward fashion.

It is reasonable to ask how accessible the logic is to practi-
tioners and students. Over the last seven years, we have taught
this logic to US Air Force Reserve Officer Training Corps
students from over forty US universities. Our experience is that
our logic is learned and successfully applied by rising juniors

and seniors in engineering and computer science who have a
sophomore level of understanding of discrete mathematics and
logic. Our assessment results are detailed in [5].

In addition to what is described in this paper, we have
implemented this logic [9] as a conservative extension to
the Higher Order Logic (HOL) theorem prover [7]. The
HOL implementation provides a rigorous, automated, and easy
means for the independent verification of security claims, and
the re-use of designs and policies.

We are currently developing and extending a new imple-
mentation of the logic in HOL. We are using the logic in a
wide variety of applications including secure hardware design
and commercial banking protocols.

REFERENCES

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin.
A calculus for access control in distributed systems. ACM Transactions
on Programming Languages and Systems, 15(4):706–734, September
1993.

[2] D. Bell and L. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report Technical Report MTR-2547, Vol. I,
MITRE Corporation, Bedford, MA, March 1973.

[3] D. Bell and L. LaPadula. Secure computer system: Unified exposition
and multics interpretation. Technical Report MTR-2997 Rev. 1, MITRE
Corporation, Bedford, MA, March 1975.

[4] Matt Bishop. Computer Security: Art and Science. Addison Wesley
Professional, 2003.

[5] Shiu-Kai Chin and Susan Older. A rigorous approach to teaching access
control. In Proceedings of the First Annual Conference on Education
in Information Security. ACM, 2006.

[6] Shiu-Kai Chin and Susan Older. Reasoning about delegation and account
access in retail payment systems. In Vladimir Gorodetsky, Igor V.
Kotenko, and Victor A. Skormin, editors, MMM-ACNS, volume 1 of
Communications in Computer and Information Science, pages 99–114.
Springer, 2007.

[7] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University
Press, New York, 1993.

[8] Thumrongsak Kosiyatrakul, Susan Older, and Shiu-Kai Chin. A modal
logic for role-based access control. In Vladimir Gorodetsky, Igor V.
Kotenko, and Victor A. Skormin, editors, MMM-ACNS, volume 3685 of
Lecture Notes in Computer Science, pages 179–193. Springer, 2005.

[9] Thumrongsak Kosiyatrakul, Susan Older, Polar R. Humenn, and Shiu-
Kai Chin. Implementing a calculus for distributed access control in
higher order logic and hol. In Vladimir Gorodetsky, Leonard J. Popyack,
and Victor A. Skormin, editors, MMM-ACNS, volume 2776 of Lecture
Notes in Computer Science, pages 32–46. Springer, 2003.

[10] Jerome Saltzer and Michael Schroeder. The Protection of Information
in Computer Systems. Proceedings IEEE, 1975.

