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Abstract— Mission assurance is the assurance of the correctness,
integrity, security, and availability of critical capabilities neces-
sary to complete a mission successfully. National security depends
on the integrity of command and control for military systems,
the power grid, and financial systems. Thus, the alarming lack of
personnel capable of doing mathematically rigorous specification,
design, verification, testing, and procurement of trustworthy
systems is a national weakness with profound implications for na-
tional security. This paper reports the results of a pilot program
at the undergraduate level whose objectives include equipping
undergraduate computer engineers and computer scientists with
the theory, methods, and tools necessary for formal specification
and verification of mission-essential functions in cyberspace.

Index Terms— Cyber security, formal verification, access control,
theorem proving, undergraduate education

I. INTRODUCTION

“No operator should ever have to ask . . . ‘Will my
weapon work?’ . . . Cyberspace warfare creates just
this possibility.” – Gen John Shaud, USAF

The United States’ power, electrical grid, financial services,
and other critical infrastructure are inextricably intertwined
with cyber operations that depend on computer-enabled com-
mand and control systems. The threat to national security by
compromise of these systems’ integrity is well publicized.
Furthermore, the desirability and strategic importance of rigor-
ous, certifiable, reusable, and replicable assurance using formal
verification is widely acknowledged.

Despite these facts, new systems are often designed by
the newest engineers, for understandable economic reasons.
Without a solid educational foundation that supports skills
in rigorous specification, design, and verification, there is
little hope for improved assurance of system integrity and
security. This capability is generally believed to be beyond the
grasp of practitioners and computer engineering and science
undergraduates.

Our results disprove this belief. Our conclusions are based
on a ten-year partnership and experimentation to devise the
theory, practice, techniques, tools, and means for technology
transfer (i.e., education and courses at the undergraduate
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level) necessary for assuring the integrity and security of
critical systems. Our efforts are focused on the next generation
of leaders in cyberspace: undergraduate computer engineers,
computer scientists, and reserve officer training corps (ROTC)
cadets. Our conclusions are based on the achievements of more
than 265 students from more than 50 US universities who have
gone through our programs. This paper gives an overview of
the theory, application, tools, and courses we use to equip
future leaders to think rigorously about mission assurance in
cyberspace.

The rest of this paper is organized as follows. Section II
presents the context of our work in terms of our educational,
research, and internship programs. Section III describes our
methods in terms of conceptual roots, objectives, and tools.
We present our results in Section IV and our lessons learned
in Section V. Our conclusions are in Section VI.

II. CONTEXT: ACE-CS, INTERNSHIPS, AND THE CYBER
ENGINEERING SEMESTER

Our results are based on a ten-year educational partnership
among academia, industry, and government. Government, in-
dustrial, and academic researchers work together to educate
and mentor students to solve real-world problems. Team
members do not have fixed roles: government and industrial
staff at times teach theoretical courses, while academic faculty
often teach tools applied to specific problems. In all cases, a
deliberate attempt is made to integrate theory with practice to
solve real problems.

A. ACE-CS: Cyber Security Boot Camp

This partnership began with the 2003–2010 Air Force Re-
search Laboratory (AFRL) Advanced Course in Engineering
(ACE-CS) Cyber Security Boot Camp [1], [2], a ten-week
summer program based on the tenets of the General Electric
Advanced Course in Engineering (GE-ACE) [3].

The GE-ACE and ACE-CS programs emphasize mathemat-
ically rigorous solutions to real engineering problems. Both
build a culture that values teamwork, rigorous analysis, and
on-time performance. Programs like GE-ACE and ACE-CS
naturally lend themselves to building a cadre of professionals
with shared values. People who successfully complete ACE-
CS have immediate credibility with one another and with
the senior officers who actively seek out ACE-CS graduates.
Over the last ten years, the AFRL ACE-CS program has
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graduated 226 ROTC cadets and civilians from over 40 US
universities. Many ACE-CS graduates are currently on active
duty and distinguishing themselves by their capabilities and
achievements.

B. Information Assurance Internships

In 2011, ACE-CS successfully transitioned to the Air Force
Institute of Technology (AFIT-ACE). This transfer enabled the
AFRL ACE-CS team to launch the AFRL Information Assur-
ance (IA) Internship Program in the summer of 2011. When
compared to ACE-CS, the IA Internship Program has a greater
emphasis on research and problem solving throughout the
summer. Whereas ACE-CS followed the GE-ACE model of a
new problem each week, the IA Internship Program elected to
focus on an overall research problem and develop the rigorous
theoretical and practical knowledge needed to solve it. The
Summer 2011 research problem focused on the science of
mission assurance in a cloud-computing environment, with
an emphasis on Air Force mission-essential functions in a
contested environment.

The 2011 IA Internship had 13 students. The 2012 IA In-
ternship will have a total of 25 students from universities
across the US, including Massachusetts Institute of Technol-
ogy, University of Illinois at Urbana-Champaign, Rochester
Institute of Technology, Michigan Technological University,
University of Texas at El Paso, Southern University, Missouri
University of Science and Technology, Bethel College, Rutgers
University, University of Maryland, University of Virginia,
Kennesaw State University, Iowa State University, Syracuse
University, Rose Hulman University, University of Delaware,
Clarkson University, Texas A&M University, Ithaca College,
University of Dayton, Rennsalaer Polytechnic Institute, Uni-
versity of Montana, University of Michigan, and University of
Pittsburgh.

C. The Cyber Engineering Semester

The same core team that planned and executed ACE-CS and
the IA Internship Program also planned and executed the
Cyber Engineering Semester (CES). By cyber engineering,
we mean the computer engineering and computer science
necessary for engineering trustworthy systems operating in
contested environments. The pilot program was executed suc-
cessfully in the Fall 2011 semester with six undergraduates
(five juniors and one senior) from Michigan Technical Univer-
sity, Syracuse University, and Texas A&M University. Three
students were Air Force ROTC cadets, and the rest were
civilian students.

Figure 1 shows the Fall 2011 Cyber Engineering schedule. The
18-credit pilot program consisted of five courses and a paid
internship at the Air Force Research Lab (AFRL) Information
Directorate. Each course is briefly described in Figure 2.

As in the ACE-CS and IA Internship programs, the CES by
design keeps the students together as a cohort. The faculty

Monday Tuesday Wednesday Thursday Friday
0800 Secure

Hardware
Lab

Secure OS Secure
Hardware
Lab

Secure OS
Paid
Internship
at Air
Force
Research
Lab

0900
1000
1100
1200 Secure

Architecture Cyber En-
gineering
Seminar

Secure
Architecture Cyber En-

gineering
Seminar

1300
1400 Engineering

Assurance
Lab

Engineering
Assurance
Lab

1500
1600

Fig. 1: Cyber Engineering schedule for Fall 2011 semester

1) Cyber Engineering Seminar (3 credit hours): Exploration of the operational
art of cyber operations at the strategic, operational, and tactical levels through
critical thinking exercises, problem solving, writing, and presentation

2) Engineering Assurance Lab (4 credit hours): Introduction to the theory,
practice, and tools for building and verifying systems

3) Design of Secure Operating Systems (4 credit hours): Design and imple-
mentation of modern secure operating systems. Authentication, authorization,
and access control

4) Secure Computer Architecture (4 credit hours): Introduction to fundamen-
tals of computer architecture with emphasis on security measures in hardware
implementation of processor units

5) Secure Hardware Engineering Lab (3 credit hours): Design and implemen-
tation of hardware to preserve both the confidentiality and integrity of data,
authenticate keys, people, and privileges, and protect physical memory

Fig. 2: Cyber Engineering Semester course descriptions

and staff meet regularly to “connect the dots” for the students
(i.e., enable the students to see how theory, concepts, and tools
could be integrated to solve real-world problems seen in class
projects and the AFRL internship). The same ACE-CS cultural
values are inculcated: teamwork, rigorous analysis, and on-
time performance. Alumni from ACE-CS, the IA Internship
Program, and the CES are part of a growing cohort of leaders
in cyberspace.

All involved describe the CES as “intense.” Because of space
limitations, in this paper we focus on the formal reasoning and
verification elements of the CES, which are perhaps the most
novel aspects of the program. Teaching security and formal
verification to undergraduates using theorem provers is rare,
if not considered virtually impossible by most academics.

III. METHODS: OBJECTIVES, CENTRAL CONCEPT, AND
POWER TOOLS

The three programs—ACE-CS, IA Internship Program, and
CES—have their programmatic and philosophical roots firmly
planted in the GE-ACE. Founded in 1923, the GE-ACE was
created to address a particular need as described by Francis
Pratt, then GE vice president of engineering [3]: “[A] notice-
able number of our most accomplished theoretical engineers
and laboratorians have either pursued post-graduate studies
at European universities or else have had all of their scholastic
training abroad, and the time is approaching when their
successors will have to be found”. Simply put, GE in 1923
was facing a critical shortage of engineering leaders necessary
for its future survival.

Robert E. Doherty, who later went on to be president of
Carnegie Institute of Technology, founded the (still extant) GE-
ACE to solve Pratt’s problem. His solution was the three-year
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Level Cyber Engineering Seminar Engineering Assurance Lab

Comprehension

- Realize the operational context of cyber engineering
- Describe the steps to access local and remote systems
- Explain security as part of software development
- Describe the information life cycle

- Explain the meaning and discuss the interpretation of given mathe-
matical or logical expressions

- Restate in the Haskell functional language or Higher Order Logic
(HOL) theorem prover a given mathematical or logical definition or
property

Application
- Circumvent OS authentication mechanisms to gain access
- Harden BIOS, boot loaders, OS, and applications
- Eliminate code-level I/O-derived vulnerabilities

- Use Haskell to create an executable specification
- Use HOL to restate a specification in higher-order logic
- Restate the syntax and operational semantics of a language in Haskell

and HOL
- Use HOL to define concepts of operations (CONOPS), access-control

descriptions, or policies

Analysis

- When given a mission, determine the requirements for mission assur-
ance

- Apply knowledge of past revolutions in military affairs to current
situations

- Use the rules of structural operational semantics (SOS) or access-
control logic (ACL) to prove properties in SOS or ACL

- Use QuickCheck or HOL to check or verify properties

Synthesis

- Derive actionable intelligence on a given target from open source
resources

- Alter OS and application software to maintain access and obscure
activities

- Create operational deceive, disrupt, degrade, deny, and destroy effects

- Construct in Haskell or HOL, appropriate data types, predicates,
functions, semantics rules, and proofs for specifications, definitions,
or properties

- Devise specialized inference in HOL for reasoning about access
control, specific data structures, and concepts of operation

Evaluation - Assess software applications for input-derived vulnerabilities - Assess the correctness of proofs using the rules of SOS, access-control
logic, or HOL

Fig. 3: Educational outcomes listed in increasing level of sophistication

in-house GE-ACE program, designed to develop the following
attributes [3]:

1) the ability to identify and solve real engineering
problems,

2) concern for the readers of engineering reports,

3) generalists with competence is a wide variety of
engineering fields,

4) an understanding of the use and misuse of math-
ematical analysis, and other ways of solving en-
gineering problems, and

5) the realization that the engineer’s primary pur-
pose is not mathematical virtuosity, but the im-
provement of methods and products.

Eighty-nine years later, these attributes remain central to the
IA Internship and CES programs. Although the IA Internship
and CES Programs are less than three years in duration, what
truly distinguishes them from the GE-ACE is the fact that they
are operated jointly by government, industry, and academia.
This partnership affords a degree of mutual support and agility
that programs operated solely by government, industry, or
academia cannot match.

A. Objectives

Figure 3 lists the educational outcomes for the Cyber Engi-
neering Seminar and the Engineering Assurance Laboratory.
The Cyber Engineering Seminar course was taught by AFRL
staff and industry staff. The overall objectives of the seminar
course are similar to the GE-ACE: rigorous solution of real
engineering problems in a professional environment. Students
are required to do a formal mathematical analysis, write a
full engineering report, and make professional presentations
defending their solutions.

The Engineering Assurance Laboratory (EAL) was taught by
university faculty and focused on formal-verification tools.

This course is unusual at the undergraduate level due to
its use of functional programming (Haskell) and theorem
provers (HOL). Functional programming (which emphasizes
the mathematical relationships between functions’ input and
output) and theorem provers (which check the correctness
of proofs) both serve the same end: rigorous mathematical
assurance of correctness. The importance of computer-assisted
reasoning tools in the context of mission assurance and secu-
rity cannot be overstated: the computer assistance is necessary
both for verification and for the credible dissemination of
results. The situation is analogous to hardware design, which
today depends on computer-aided design (CAD) tools such
as design-rule checkers, logic-to-layout verifiers, and model
checkers.

The EAL exists to support the problem solving required in the
Cyber Engineering Seminar and the AFRL internship. The first
half of the EAL introduces the basics of Haskell programming
and HOL theorem proving, along with structural operational
semantics. The combination of functional programming and
HOL theorem proving is of great practical value, because
HOL (like many other theorem provers) is a collection of
functional programs whose inference rules are functions that
return objects of type theorem. In the second half of the EAL,
EAL homework problems are directly related to the types of
problems seen in the Seminar and Internship.

B. A Command-and-Control Calculus

We view the integrity of command and control to be of
paramount importance for mission assurance. In the same
way that propositional logic is the basis of digital design
for computer hardware engineers, a calculus for command
and control is central to designing and verifying the logical
consistency of mission command and control, protocols, and
policies for security and integrity.

The command-and-control calculus we use is the access-
control logic described in the textbook Access Control, Se-
curity, and Trust: A Logical Approach [4]. This calculus is
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Says
ϕ

P says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P | Q says ϕ ⊃ Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

& Says (1)
P & Q says ϕ

P says ϕ ∧Q says ϕ
& Says (2)

P says ϕ ∧Q says ϕ

P & Q says ϕ

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of |
P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Fig. 4: Sample inference rules of the access-control logic

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

Fig. 5: Basis for determinning whether to grant access request

based on an access-control and authentication logic originally
defined by Lampson, Abadi, Burrows, Wobber, and Plotkin
[5], [6]. The inference rules of the command-and-control
calculus (some of which appear in Figure 4) are guaranteed
to be logically sound with respect to their (Kripke) semantics.

The central question addressed by the calculus is illustrated in
Figure 5. Given a request (or command) to access a protected
resource or capability, how do we logically derive whether or
not to grant that request based upon specific policies, trust
assumptions, credentials presented, and assumptions about
authorities and their jurisdiction? This question is analogous
to what computer hardware engineers ask when they use logic
to derive the output values of computer hardware.

The command-and-control calculus can be applied at all levels
of abstraction, from the control of physical memory and net-
work protocols, up to and including the security and integrity
policies of organizations. Using the same command-and-
control calculus across multiple levels of abstraction enables
consistent interpretations and implementations of policies.

A calculus is useful to the extent that it describes useful con-
cepts and relationships. Figure 6 shows how some important
relationships are represented in the logic. To illustrate how the
calculus works, we show how to derive conclusions using the
relationships in Figure 6 and the inference rules in Figure 4.

As a simple example, suppose that Alice’s public key is Ka

and that this association is certified by certificate authority

Relationship Formula
Key associated with Alice Ka ⇒ Alice
Bob has jurisdiction (controls or is be-
lieved) over statement ϕ Bob controls ϕ

Alice and Bob together say ϕ (Alice & Bob) says ϕ
Alice quotes Bob as saying ϕ (Alice | Bob) says ϕ
Bob is Alice’s delegate on statement ϕ Bob reps Alice on ϕ
Carol is authorized in Role on statement ϕ Carol reps Role on ϕ
Carol acting in Role makes statement ϕ (Carol | Role) says ϕ

Fig. 6: Relationships and their description in the calculus

1. CA controls (Ka ⇒ Alice) Trust in CA’s jurisdiction over keys
2. Kca ⇒ CA Trust assumption associating Kca with CA
3. Kca says (Ka ⇒ Alice) Public key certificate
4. CA says (Ka ⇒ Alice) 2, 3 Derived Speaks For
5. Ka ⇒ Alice 1, 4 Controls

Fig. 7: Proof for associating a public key with a principal

CA whose key is Kca. This certification is a public-key
certificate signed by Kca. Further suppose that Bob trusts
or recognizes CA’s authority over public-key certificates and
that Bob believes Kca is CA’s public key. The proof in
Figure 7 provides a formal justification for Bob to conclude
that Ka is Alice’s key (lines 1 through 3 indicate Bob’s starting
assumptions, and everything afterward follows as the result of
inference rules from Figure 4.)

As another example, suppose that Alice is Blue Force Com-
mander (BFC) and in that role has the authority to issue the
go command to start a mission. Suppose further that Bob
is in Alice’s chain of command and that he receives Alice’s
go command encrypted with key Ka. The proof in Figure 8
provides a formal justification of Bob’s conclusion that the
encrypted order he receives is legitimate and actionable.

The proofs in Figures 7 and 8 give rise to the two new derived
inference rules shown in Figure 9, which are guaranteed to be
sound by construction. The utility of the derived inference

1. BFC controls 〈go〉 Trust in BFC’s authority
2. Alice reps BFC on 〈go〉 Trust assumption that Alice is BFC
3. CA controls (Ka ⇒ Alice) Trust in CA’s jurisdiction over keys
4. Kca ⇒ CA Trust assumption associating Kca with CA
5. Kca says (Ka ⇒ Alice) Public key certificate
6. (Ka | BFC) says 〈go〉 Alice’s order as BFC encrypted using Ka

7. Ka ⇒ Alice 3,4,5 DR1
8. BFC⇒ BFC Idempotency of ⇒
9. Ka | BFC⇒ Alice | BFC 7, 8 Monotonicity of |
10. Alice | BFC says 〈go〉 9, 6 Derived Speaks For
11. 〈go〉 1, 2, 10 Reps

Fig. 8: Proof of legitimacy of a mission order

DR1

CA controls (Ka ⇒ Alice) Kca ⇒ CA
Kca says (Ka ⇒ Alice)

Ka ⇒ Alice

DR2

BFC controls 〈go〉 Alice reps BFC on 〈go〉
CA controls (Ka ⇒ Alice) Kca ⇒ CA

Kca says (Ka ⇒ Alice) (Ka | BFC) says 〈go〉
〈go〉

Fig. 9: Two derived inference rules
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rules is twofold. First, they support reuse: once derived, the
inference rule can be used in subsequent proofs (for example,
DR1 is used in the mission-order proof of Figure 8). Second,
they serve as operational checklists that can be used to justify
actions when given a request/order within a specific context of
trust assumptions, certificates, and jurisdictions of authorities.

C. Power Tools

No matter how simple a calculation might be, the possibility of
human error is ever present. The utility of theorem provers—
such as the Cambridge University Higher Order Logic (HOL-
4) theorem prover [7]—is that they can be used to check
proofs, serving as an antidote to self-delusion. Throughout the
Cyber Engineering Semester, we viewed the use of HOL as a
means for assurance, not as an end in itself.

Our experience was that a two-week introduction to functional
programming in Haskell was sufficient for the CES students
to begin working with HOL. With just this modest Haskell
background, they could view the theorem prover as a collection
of functional programs that return objects of type theorem. By
mid-semester, they were able to use the HOL implementation
of the access-control logic/command-and-control calculus. As
an example, Figure 10 shows a verbatim interactive HOL
session for the the proof of DR1 that appeared in Figure 7.
User inputs are on lines starting with the user prompt “-”;
HOL’s responses are on lines starting with “>”.

Although the students initially found HOL challenging, they
valued the assurance and deeper understanding they achieved
by using HOL: whereas they had doubts about the correctness
of their unchecked hand proofs, they were very confident once
their proofs were checked in HOL. In addition to proving
properties in the access-control logic using pre-defined infer-
ence rules, they were able to devise their own sound custom
inference rules.

To be explicit, the CES students were users of the access-
control logic implementation and calculus, not experts in HOL.
We had embedded the logic’s syntax and semantics, core
inference rules, and the proofs of the underlying theorems
as conservative extensions to HOL prior to the start of the
semester. However, the students could wield HOL well enough
in this specific domain to get useful results that they recog-
nized to be useful.

IV. RESULTS

In the previous section, we described the content of the En-
gineering Assurance Lab and the Cyber Engineering Seminar.
We now turn our attention to what our students were able to
do by the end of the semester.

A. Problems

The Cyber Engineering Seminar in combination with the
AFRL Internship had three projects that all required formal

Project Descriptions
1) Play Station Network: Students had to formally model and validate

the architecture of the Play Station Network (PSN). They then
had to use their models to identify possible security flaws and
recommend changes to eliminate the vulnerabilities. Vulnerabilities
were generally found to be based on the trust assumptions.

2) RFC 1421: RFC 1421 describes a secure email protocol. Students
were to read and translate the verbal description into a formal process
diagram. This process diagram had to specify all the necessary
steps required to successfully implement the protocol. Further, they
modeled the resulting process using the access-control logic to
identify the foundations for trust in the RFC.

3) Internship project: The students were to read two protocols pre-
viously created for secure communication and control in the cloud.
These protocols are known to be incomplete and have flaws. Students
used the access-control logic to model the system and identify the
flaws from a formal design perspective.

Fig. 11: Cyber Engineering Seminar and internship projects

analysis using the access-control logic to describe architec-
tures, protocols, operations, and identify flaws. The three
projects were (1) to analyze the Sony Play Station Network
and its flaws; (2) to analyze a secure email protocol (RFC
1421); and (3) to analyze and correct two flawed protocols
for secure communication and control in the cloud. Brief
descriptions of the projects appear in Figure 11.

Assignments in the EAL were aimed at supporting the anal-
ysis required of students in the Cyber Engineering Seminar.
Whereas the assignments in the first half of the EAL were
dedicated to functional programming and proof techniques,
the second half of the EAL was aimed at using the command-
and-control calculus in HOL to do analysis of larger problems.
This was one way we helped students “connect the dots” in
terms of specification, design, and verification.

We describe one problem that was designed to help students
execute the virtuous cycle of specification, design, and ver-
ification. The problem focuses on the command-and-control
concept of operations (CONOPS) for a weapon that requires
dual authorization for launch. The problem scenario involves
coalition operations—Blue and Gold Forces—each with a
commander, operator, and certificate authority (CA). A Joint
Forces Certificate Authority certified each of the Blue and
Gold Force CAs. The CA hierarchy and flow of command and
control is shown in Figure 12. Each commander has authority
to issue a go/nogo command, upon which the corresponding
operators issued launch/abort commands to the weapon.

Figure 13 gives a high-level view of the CONOPS. The launch
CONOPS shows the weapon being launched when both Blue
and Gold Force Operators say launch. The abort CONOPS
indicates that either Blue or Gold Force Operators can abort
the weapon.

Given the high-level CONOPS as a start, the problem state-
ment specified the following aspect:

1) Certificate authorities, keys, and means for authentication
(see Figure 14)

2) Mission roles and the scope of authority (jurisdiction) for
each role (see Figure 15)
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- val a1 = ACL_ASSUM ‘‘(Name CA) controls ((Name Ka) speaks_for (Name Alice))‘‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val a1 = [.] |- (M,Oi,Os) sat Name CA controls Name Ka speaks_for Name Alice

: thm
- val a2 = ACL_ASSUM ‘‘(Name Kca) speaks_for (Name CA)‘‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val a2 = [.] |- (M,Oi,Os) sat Name Kca speaks_for Name CA : thm
- val a3 = ACL_ASSUM ‘‘(Name Kca) says ((Name Ka) speaks_for (Name Alice))‘‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val a3 = [.] |- (M,Oi,Os) sat Name Kca says Name Ka speaks_for Name Alice :

thm
- val th1 = SPEAKS_FOR a2 a3;
> val th1 = [..] |- (M,Oi,Os) sat Name CA says Name Ka speaks_for Name Alice :

thm
- val th2 = CONTROLS a1 th1;
> val th2 = [...] |- (M,Oi,Os) sat Name Ka speaks_for Name Alice : thm

Fig. 10: Sample proof in HOL of the derived inference rule DR1

Joint Forces Certificate Authority
JFCA

Blue Forces 
Certificate Authority

BFCA

Gold Forces 
Certificate Authority

GFCA

Blue Forces Commander

Blue Forces Operator

Gold Forces Commander

Gold Forces Operator

Weapon

go/nogo go/nogo

launch/abort launch/abort

(a) Certificate Authority Hierarchy (b) Flow of Command and Control

Fig. 12: Certificate-authority hierarchy and flow of command and control

Blue Forces Operator
BFC says go

Jurisdiction Statements
Policy Statements
Trust Assumptions

------------------------------
BFO says launch

BFC says go

Gold Forces Operator
GFC says go

Jurisdiction Statements
Policy Statements
Trust Assumptions

------------------------------
GFO says launch

GFC says go

Weapon
BFO says launch
GFO says launch
Policy Statements
Trust Assumptions
------------------------

launch

BFO says launch

GFO says launch

Gold Forces Operator
GFC says go

Jurisdiction Statements
Policy Statements
Trust Assumptions

------------------------------
GFO says abort

GFC says nogo

Weapon
GFO says abort

Policy Statements
Trust Assumptions
------------------------

abort

GFO says abort

Blue Forces Operator
BFC says nogo

Jurisdiction Statements
Policy Statements
Trust Assumptions

------------------------------
BFO says abort

BFC says nogo

Weapon
BFO says abort

Policy Statements
Trust Assumptions
------------------------

abort

BFO says abort

(a) Launch CONOPS (b) Abort CONOPS

Fig. 13: High-level view of launch and abort CONOPS

3) Weapons launch and abort policy (see Figure 16)

4) Role assignments and authorizations (see Figure17)

Students defined and verified weapons launch and abort
CONOPS using the access-control logic in HOL. They proved
the validity of their authentication CONOPS based on role
authorization and key assignments in HOL. Specifically, they
had to devise the jurisdiction statements, policy statements,
and trust assumptions; express them using the HOL implemen-
tation; and prove the validity of inference rules corresponding
to weapons launch or abort in HOL. For this problem, students
refined, described, and verified their CONOPS at three levels
of abstraction: (1) the highest level with only roles, (2) a
middle level with staff assigned to roles, and (3) the lowest
level with cryptographic keys assigned to mission staff.

The final problem assigned to EAL students required them
to do one more refinement: define the semantics of specific
message and certificate formats using the access-control logic
in HOL. This enabled them to describe and verify the behavior
of their designs using concrete message and certificate formats.

Certificate Authority Associated Key How Authenticated

JFCA KJFCA
Pre-distributed to all mission prin-
cipals

Blue Forces CA KBFCA Authenticated by JFCA
Gold Forces CA KGFCA Authenticated by JFCA

Fig. 14: Certificate authorities, keys, and authentication means

Role Controls How Authenticated

Blue Forces Commander go/nogo
Pre-distributed to all Blue
Forces mission principals

Gold Forces Commander go/nogo
Pre-distributed to all Gold
Forces mission principals

Blue Forces Operator launch/abort Blue Forces Commander
Gold Forces Operator launch/abort Gold Forces Commander

Fig. 15: Mission roles and jurisdiction

B. Proofs

The students’ HOL proofs used the specialized inference rules
we created for them as part of our HOL implementation of the
access-control logic. We supplied 36 HOL inference rules that
corresponded to the inference rules in the access-control logic
textbook [4]. All of the proofs done for the more complex
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Action Command and Control Requirements
Weapons Launch Launch ordered by both Blue and Gold Operators

Weapons Abort Abort ordered by either Blue or Gold Operator

Fig. 16: Weapons launch and abort policy

Person How
Authenticated Formal Description of Delegation of Authority

Alice as
BFC

pre-distributed
prior to mission

Alice reps BFC on ϕ
Alice reps BFC on (Carol reps BFO on ϕ)

Bob as
GFC

pre-distributed
prior to mission

Bob reps GFC on ϕ
Bob reps GFC on (Dan reps GFO on ϕ)

Carol as
BFO By Alice as BFC Carol reps BFO on ϕ

Dan as
GFO By Bob as GFC Dan reps GFO on ϕ

Fig. 17: Role assignments and authorizations

problems resembled the example shown in Figure 10. The
proof support we supplied was intended to mimic what they
would do in their pencil-and-paper proofs.

One group did a complete analysis of the secure cloud
protocols for their internship using the HOL implementation of
the access-control logic. They did this on their own initiative
without any additional help from the faculty teaching the
Engineering Assurance Laboratory.

C. Reports

Reports were an important deliverable for all projects: no one
believes an analysis unless it is presented in a compelling
fashion.

We required students to use LATEX and Beamer for all reports
and presentations in both the Cyber Engineering Seminar and
Engineering Assurance Laboratory. One primary motivation
for this requirement was to make use of HOL’s automatic
generation of LATEX macros that typeset all formulas of a
theory: datatypes, definitions, and theorems. These macros
mean that HOL users do not have to manually enter the
formulas in their documentation, thereby eliminating a major
source of error. The benefit to readers and users of engineering
reports is the high degree of assurance and confidence that
what is documented is accurate and free from error.

Given the large number of formulas to be documented and
typeset, we found that the benefits of using LATEX and Beamer
far outweighed the costs associated with teaching the students
these tools. We provided students with style files and sam-
ple report/presentation templates. The reports and presenta-
tions were professional in appearance. The accuracy of the
HOL documentation was assured due to the use of HOL’s
LATEX macros for pretty printing HOL theories.

V. PLANS: LESSONS LEARNED AND NEXT STEPS

As an educational experiment, the goal of the 2011 Cyber
Engineering Semester pilot program was to see if we could
get undergraduates to rigorously assure the security and
integrity of computer systems they devised at the level of

hardware, architecture, operating systems, networks, protocols,
and applications. Simply put, would they be able to rigorously
comprehend, analyze, and synthesize the concepts put forth
in Saltzer and Schroeder’s classic paper, The Protection of
Information in Computer Systems [8]?

As instructors, we had three major questions: (1) Were we
asking too much? (2) Would the design of our five courses in
fact reinforce security and integrity concepts so that students
would be able to “connect the dots”? (3) Would students
actually be able to do formal proofs of correctness using tools
(e.g., theorem provers) generally thought to be beyond the
grasp of undergraduates? The answers in short are: (1) almost,
(2) mostly, and (3) yes.

A. Lessons Learned

We learned multiple lessons that will inform our next steps.

1) The CES courses and internship were very intense, due
in large part to the time demands of class meetings,
internship responsibilities, and homework. Because our
students had excellent skills (all had GPAs of 3.3 and
above), they coped. However, the small size of the pilot
program also allowed us to make some minor mid-
semester adjustments to help alleviate the time pressure.
Our challenge and goal is to convey the same capabilities
next time with less intensity.

2) All five courses utilized the access-control logic or its
concepts. The benefit was a common way of thinking
about security and integrity across the five courses. Mu-
tually reinforcing assignments, when we were able to
synchronize them, worked.

3) Introducing HOL theorem proving worked because stu-
dents had enough functional-programming expertise to
comprehend, analyze, and synthesize HOL inference
rules as functional programs. Restricting students’ atten-
tion primarily to the 36 access-control logic inference
rules enabled the students to do meaningful HOL proofs.
The value to the students was the assurance they achieved
when they proved their CONOPS were valid.

B. Next Steps

Based on our experience, we have a much better idea of what
undergraduates are able to accomplish and how we might
simplify our program for 2012. Specifically, we can accurately
plan the timing of our assignments to smooth out the workload
of students. We plan on having hardware, OS, and architecture
projects more closely synchronized to avoid duplication and
promote greater reinforcement of common ideas. In terms
of formal verification and functional programming, we now
know how much detail is needed in our explanations and
exercises. This will enable us to move more quickly with
greater coverage of concepts.
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All the partners were pleased with the outcome of the pilot.
We are planning on testing our latest ideas in the Summer
2012 Information Assurance Internship in preparation for
the Fall 2012 CES. Finally, we are planning a four-year
cyber engineering program with an eye toward making the
assurance of security and integrity in cyber systems a routine
part of computer engineering and computer science at the
undergraduate level.

VI. CONCLUSIONS

“. . . officers can never act with confidence until they
are masters in their profession . . .” – Col. Harry
Knox, 27 September 1776, on establishing the need
for artillery schools in the US

Colonel Knox’s observations in 1776 apply today: rigorous ed-
ucation is essential, because there is no substitute for knowing
what you are doing. Just as artillery officers need to know the
mathematics of ballistic trajectories, doctrine, and solutions to
operational and tactical problems, cyberspace leaders need to
know the underlying mathematics of cyberspace, be able to
solve operational and tactical problems, and develop effective
doctrine.

Our goal—from the start of the 2003 Advanced Course in
Engineering Cyber Security Boot Camp, through the Cyber
Engineering Semester, and onwards to a four-year Cyber En-
gineering Program—is to meld systems engineering thinking
with leadership thinking. Cyberspace leaders who can “do the
math” as systems engineers and military leaders are capable
of reshaping cyberspace to their advantage.

Our thinking on this subject has evolved and expanded beyond
what we initially thought possible. We have needed the ten
years to get as far as we have, and our efforts have benefitted
greatly from the ability to try out our ideas on students
from a wide variety of institutions. When we began in 2003,
we thought that the notion of having rising juniors use a
command-and-control calculus with a Kripke semantics was
highly questionable. In 2005, we discovered that eight hours of
instruction could equip students to use the calculus correctly;
however, such limited instruction time was insufficient for stu-
dents to carry on by themselves without structured supervision.
By the 2011 IA Internships, the instruction had grown to ten
weeks and included functional programming and just a hint
of theorem proving. The Cyber Engineer Semester provided
sufficient evidence that mathematically rigorous assurance is
feasible in a way that is relevant beyond one course.

Two professors who can do a proof is not a critical capability.
In contrast, two thousand engineers and officers capable of
mathematical analysis and leadership in support of design-
ing, verifying, procuring, and operating systems is a critical
capability. This vision is shared by an academic, industry,
and governmental partnership with a ten-year history of joint
operations. By working together to realize this vision, we
have gained a level of trust and conceptual unity that enables

us to rapidly design and deploy research and educational
programs, integrated with internships and focused on real-
world problems.

We are working hard to meet the goal of two thousand
engineers and officers with the capabilities described here.
We hope to expand this partnership to other universities,
corporations, and government agencies so that we together
can meet the critical national need for capable leadership in
cyberspace.
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