ECS526

Final Project Paper
 Group 1
 December 10, 2003

Evaluation of

Monofilament Testing for Product Mixing

Parvez Bahadur
Gino Duca - Group Leader
Prasanna Jagannathan
Batul Mukadana
Anirudha Kishor Parab
Tushar Dwarka Sainani
Jr-Hung Tsai

Section: Page
I. Problem Statement 3
II. Executive Summary 4
III.Problem Restatement 5
Objective. 5
Statistical Problem Statement 5
Method 5
Data Set 6
IV. Data Analysis 8
Data Collection. 8
Data Organization 8
Data Investigation. 8
V. Hypothesis Testing 43
Paired-t test for \%Strain@3GPD. 43
Paired-t test for \% Tenacity@Break 43
VI. Correlation Analysis. 44
Sample 1. 44
Sample 2. 45
VII. Modeling: ANOVA and Regression 46
ANOVA: Sample 1 Strain 46
ANOVA: Sample 2 Strain 50
ANOVA: Sample 1 Tenacity 53
ANOVA: Sample 2 Tenacity 55
ANOVA: Tester 1 Sample 1 Strain. 58
ANOVA: Tester 1 Sample 2 Strain 60
Hypothesis Testing Confirmation 62
Regression Analysis: Tester 1A versus Tester2A, 3A, 4A 63
Regression Analysis: Tester 1B versus Tester2B, 3B, 4B 64
VIII. Conclusion and Recommendations 65

I. Problem Statement:

Polyester monofilament is produced at a local company for use in paper machine fabrics around the world. Products are currently produced on demand for delivery in six weeks with each ordered lot produced entirely on one production line. This company would like to produce many products at scheduled times and inventory material made on several different production lines. The company is confident that it can meet the quality specifications as long as the test method and the tester are not introducing significant error.

II. Executive Summary:

Monofilament samples were collected from 2 production lines that produce product X . The samples were stress-strain tested by using standard test techniques by four different testers. The project should not move forward as all properties for each sample were not found to be equal. The tested samples were found to statistically different mean values for the property of "\% Strain @ 3 GPD", but for the property of "Tenacity @ Break", the mean values were the same. Tester error or sampling error are believed to be the largest contributing factors. The experiment and analysis should be repeated.

III. Problem Restatement

Objective:
Statistical methods will be used to analyze the collected data to determine if this project can move forward. Having the ability to mix lots will give the company a
competitive advantage, but reducing yield loss and lead times to meet customer orders.

Statistical Problem Statement:

Each of the four testers perform standard "Stress-strain Testing", and all the data from the testers will be analyzed. Monofilament samples are chosen from two different production line; sample 1 and sample 2. Data is sampled randomly in order ensure the statistical independence of the sample.

Each tester performed ten tests of each of the samples on three different days. We gathered all the data after their test and divided them into the two most critical properties:

Percent Strain at 3 grams/denier (\%Strain@3GPD)
Tenacity at break (ten@break)

Method:

Various methods will be used to analyze the data and determine if any differences exist between the properties of each sample and potentially, between the testers.

Data Set (tabular form)

\% Strain @ 3GPD:

	Tester 1 A	Tester 1 B	Tester 2 A	Tester 2 B	Tester 3 A	Tester 3 B	Tester 4 A	Tester 4 B
1	3.479	3.493	3.607	3.591	3.632	3.635	3.555	3.592
2	3.489	3.536	3.561	3.595	3.592	3.574	3.569	3.646
3	3.507	3.529	3.603	3.605	3.587	3.579	3.554	3.604
4	3.539	3.516	3.606	3.589	3.629	3.57	3.582	3.594
5	3.548	3.443	3.611	3.567	3.624	3.537	3.634	3.615
6	3.54	3.49	3.611	3.616	3.623	3.628	3.571	3.617
7	3.533	3.493	3.632	3.63	3.583	3.587	3.628	3.656
8	3.516	3.563	3.588	3.563	3.591	3.617	3.634	3.693

9	3.535	3.512	3.606	3.586	3.572	3.578	3.645	3.614
10	3.574	3.429	3.579	3.551	3.588	3.535	3.578	3.576
11	3.57	3.658	3.609	3.508	3.62	3.633	3.593	3.592
12	3.576	3.569	3.665	3.556	3.637	3.631	3.605	3.606
13	3.521	3.611	3.672	3.585	3.655	3.591	3.577	3.608
14	3.55	3.549	3.661	3.568	3.676	3.571	3.556	3.609
15	3.54	3.547	3.626	3.67	3.652	3.596	3.554	3.535
16	3.533	3.573	3.636	3.655	3.643	3.549	3.588	3.55
17	3.569	3.561	3.695	3.606	3.672	3.545	3.609	3.634
18	3.55	3.522	3.682	3.565	3.688	3.507	3.625	3.575
19	3.59	3.522	3.669	3.607	3.674	3.573	3.575	3.512
20	3.48	3.508	3.66	3.604	3.707	3.543	3.585	3.587
21	3.586	3.559	3.677	3.638	3.719	3.562	3.661	3.648
22	3.594	3.581	3.657	3.609	3.654	3.581	3.644	3.645
23	3.557	3.547	3.634	3.589	3.656	3.498	3.643	3.489
24	3.599	3.509	3.68	3.645	3.694	3.553	3.734	3.65
25	3.612	3.533	3.631	3.612	3.641	3.579	3.607	3.641
26	3.597	3.548	3.618	3.663	3.715	3.567	3.626	3.638
27	3.563	3.594	3.624	3.632	3.678	3.585	3.657	3.56
28	3.479	3.565	3.637	3.584	3.694	3.593	3.617	3.6
29	3.555	3.562	3.631	3.558	3.656	3.598	3.659	3.621
30	3.54	3.616	3.661	3.548	3.665	3.558	3.701	3.71

Tenacity @ Break:

	Tester 1 AA	Tester 1 BB	Tester 2 AA	Tester 2 BB	Tester 3 AA	Tester 3 BB	Tester 4 AA	Tester 4 BB
1	6.779	7.1475	6.925	6.737	6.83	6.9395	6.983	6.8275
2	6.6045	6.686	6.565	7.1625	6.9995	6.932	6.788	6.9995
3	6.7445	6.8115	6.96	7.088	6.8115	6.8025	6.9395	6.8765
4	6.514	6.9995	6.482	6.7645	6.6815	7.0225	6.7905	6.944
5	6.862	6.951	6.642	6.944	6.6305	7.0065	6.8025	6.9205
6	6.7995	6.9015	6.4	7.0345	6.7955	6.8345	6.8505	6.9995
7	6.865	6.7995	6.753	6.7995	6.8115	6.737	7.0025	6.846
8	6.8695	6.8185	7.011	6.967	6.549	6.995	6.772	6.651
9	6.8115	6.916	6.514	6.8155	6.533	7.0385	6.8895	6.913

10	6.3885	6.8925	6.5445	7.053	6.8155	6.976	6.9045	6.8155
11	6.8275	7.104	7.062	6.96	6.839	6.7765	6.702	6.654
12	6.8695	7.085	6.983	7.104	6.9045	6.8155	6.642	6.721
13	6.948	6.983	6.8925	7.062	6.916	6.909	6.881	6.928
14	6.8225	6.9365	6.913	6.9715	6.7765	7.025	6.9045	6.7645
15	6.944	7.025	6.951	6.8735	6.9015	6.862	6.7765	6.96
16	6.8115	6.8415	6.8345	6.9875	6.897	6.654	6.8415	6.967
17	6.788	6.8535	6.979	6.7995	6.979	7.069	6.8225	6.8345
18	6.9395	6.6815	7.0295	6.995	6.916	7.057	6.9365	6.951
19	6.4395	6.7165	6.9395	6.928	6.7765	6.925	6.862	6.9905
20	6.8415	7.0505	6.865	6.925	6.6655	6.8345	6.7675	6.9365
21	6.913	6.7835	6.8155	6.964	6.925	6.9905	6.8225	6.607
22	6.839	6.7675	6.8185	7.151	6.705	6.8155	6.846	6.67
23	6.6185	6.897	6.8575	6.5955	6.779	7.0225	6.642	6.881
24	6.7835	6.839	6.788	6.658	6.8855	6.9045	6.7485	6.7325
25	6.4075	6.9875	6.897	6.6185	6.7675	6.865	6.7675	6.839
26	6.881	6.737	6.967	6.932	6.756	6.9395	6.7285	7.057
27	6.721	6.7955	6.7835	6.651	6.8185	6.8155	6.8765	6.9365
28	6.8155	6.8225	6.431	6.96	6.6785	6.9045	6.5095	6.8895
29	6.2325	6.779	6.8185	6.9995	6.7675	6.69	6.6185	7.0185
30	6.9015	6.6305	6.916	6.788	6.709	6.96	6.8115	6.8115

IV. Data Analysis:

Data Collection:

Each tester performed ten tests of each of the samples on three different days. Each tester performed a total of 30 tests for each sample; 120 total test values were recorded for each sample. The sampling allows us to make the assumption that all data points in each data set are independent identically distributed.

Data Organization:

After we collected all the data we wanted, the data was organized into a spreadsheet. Each property was divided into table showing the results of each tester for samples 1 and 2 (or A and B). Values 1-10, 11-20 \& 21-30 would represent the 3 test events. Further analysis was performed using Minitab.

Data II

Figure.

Variable	N	Mean	Median	TrMean	StDev	SE Mean
3GPD 1	120	3.6103	3.6110	3.6112	0.0546	0.0050
3GPD 2	120	3.5800	3.5810	3.5807	0.0489	0.0045
Variable	Minimum	Maximum	Q1	Q3		
3GPD 1	3.4790	3.7340	3.5725	3.6548		
3GPD 2	3.4290	3.7100	3.5493	3.6118		

Initial observation shows that the Mean, Standard deviation and Median are really all very close.

We also provide all the data points in each sample to show the distribution using box plots.
Figure: Boxplots - \%Strain @ 3GPD in Sample 1

Dotplot for 3 GPD tot 1

Figure: Boxplots - \%Strain @ 3GPD in Sample 2

Dotplot for 3 GPD tot 2

Figure: Graphical Summary for sample 1 in strain

Descriptive Statistics

Variable: 3GPD 1

Anderson-Darling	Normality Test
A-Squared:	0.252
P-Value:	0.734
Mean	3.61029
StDev	0.05457
Variance	$2.98 \mathrm{E}-03$
Skewness	$-2.0 \mathrm{E}-01$
Kurtosis	$-3.1 \mathrm{E}-01$
N	120
Minimum	3.47900
1st Quartile	3.57250
Median	3.61100
3rd Quartile	3.65475
Maximum	3.73400

95\% Confidence Interval for Mu $3.60043 \quad 3.62016$
95\% Confidence Interval for Sigma
$0.04843 \quad 0.06251$
95\% Confidence Interval for Median
3.596393 .62640

By observation, the sample mean and sample median are very close. Also, as P -value is 0.734 we cannot reject normality.
Figure: Graphical Summary for sample 2 in strain
Descriptive Statistics

Variable: 3GPD 2

Anderson-Darling	Normality Test
A-Squared:	0.234
P-Value:	0.792
Mean	3.58002
StDev	0.04885
Variance	$2.39 \mathrm{E}-03$
Skewness	$-2.4 \mathrm{E}-01$
Kurtosis	0.442121
N	120
Minimum	3.42900
1st Quartile	3.54925
Median	3.58100
3rd Quartile	3.61175
Maximum	3.71000
95\% Confidence Interval for Mu	
3.57119	3.58886
95\% Confidence Interval for Sigma	
0.04336	0.05596
95\% Confidence Interval for Median	
3.56980	3.59120

By observation, the sample mean and sample median are very close. Also, the P value is 0.792 so we cannot reject normality.
Figure: Descriptive Statistics - \%Strain @ 3GPD by Tester

Variable	N	Mean	Median	Tr Mean	St Dev	SE Mean	Production line
Tester 1	30	3.5474	3.5490	3.5482	0.0367	0.0067	A
Tester 2	30	3.6343	3.6315	3.6351	0.0333	0.0061	A
Tester 3	30	3.6473	3.6530	3.6473	0.0410	0.0075	A
Tester 4	30	3.6122	3.6080	3.6086	0.0444	0.0081	A
Tester 1	30	3.5413	3.5470	3.5420	0.0480	0.0088	B
Tester 2	30	3.5965	3.5930	3.5964	0.0374	0.0068	B
Tester 3	30	3.5751	3.5760	3.5762	0.0341	0.0062	B
Tester 4	30	3.6072	3.6085	3.6082	0.0480	0.0088	B

Variable	Minimum	Maximum	Q1	Q3	Production line
Tester 1	3.4790	3.6120	3.5300	3.5745	A
Tester 2	3.5610	3.6950	3.6085	3.6620	A
Tester 3	3.5720	3.7190	3.6228	3.6765	A
Tester 4	3.5540	3.7340	3.5765	3.6433	A
Tester 1	3.4290	3.6580	3.5113	3.5660	B
Tester 2	3.5080	3.6700	3.5665	3.6195	B
Tester 3	3.4980	3.6350	3.5520	3.5938	B
Tester 4	3.4890	3.7100	3.5843	3.6420	B

According to the above figure, we can observe that for each tester testing in \%strain @ 3 GPD, the Mean, Median and Standard deviation are very close.

Figure: Graphical Summary for tester 1 test sample 1 in strain

Descriptive Statistics

Variable: Tester 1A

Anderson-Darling	Normality Test
A-Squared:	0.330
P-Value:	0.502
Mean	3.54737
StDev	0.03672
Variance	$1.35 \mathrm{E}-03$
Skewness	$-3.2 \mathrm{E}-01$
Kurtosis	$-4.7 \mathrm{E}-01$
N	30
Minimum	3.47900
1st Quartile	3.53000
Median	3.54900
3rd Quartile	3.57450
Maximum	3.61200

95\% Confidence Interval for Mu $3.53365 \quad 3.56108$
95\% Confidence Interval for Sigma $0.02925 \quad 0.04937$
95\% Confidence Interval for Median $3.53591 \quad 3.56763$

By observation, we can see that the data is skewed right (sample mean is located below the sample median).Also, P -value is 0.502 so the data is normal.

Figure: Graphical Summary for tester 2 test sample 1 in strain

Descriptive Statistics

Variable: Tester 2A

Anderson-Darling	Normality Test
A-Squared:	0.377
P-Value:	0.387
Mean	3.63430
StDev	0.03329
Variance	$1.11 \mathrm{E}-03$
Skewness	$-1.1 \mathrm{E}-01$
Kurtosis	$-6.0 \mathrm{E}-01$
N	30
Minimum	3.56100
1st Quartile	3.60850
Median	3.63150
3rd Quartile	3.66200
Maximum	3.69500
95\% Confidence Interval for Mu	
3.62187	3.64673
95\% Confidence Interval for Sigma	
0.02652	0.04476
95\% Confidence Interval for Median	
3.61260	3.65931

By observation, we can see that the data is skewed left (sample median is located below the sample mean). Also, the P -value is 0.387 so we cannot reject normality.

Figure: Graphical Summary for tester 3 test sample 1 in strain

Descriptive Statistics

95\% Confidence Interval for Mu

Variable: Tester 3A

Anderson-Darling Normality Test

A-Squared:	0.300
P-Value:	0.561
Mean	3.64730
StDev	0.04097
Variance	$1.68 \mathrm{E}-03$
Skewness	$-1.4 \mathrm{E}-01$
Kurtosis	$-7.7 \mathrm{E}-01$
N	30
Minimum	3.57200
1st Quartile	3.62275
Median	3.65300
3rd Quartile	3.67650
Maximum	3.71900

95\% Confidence Interval for Mu
$3.63200 \quad 3.66260$
95\% Confidence Interval for Sigma
0.032630 .05508

95\% Confidence Interval for Median
$3.62969 \quad 3.67040$

By observation, we can see that the data is skewed right (sample mean is located below the sample median) \& the P -value is 0.561 so the data collected is normal.

Figure: Graphical Summary for tester 4 test sample 1 in strain

Descriptive Statistics

Variable: Tester 4A

Anderson-Darling Normality Test
A-Squared: 0.451
P-Value: 0.257

Mean	3.61220
StDev	0.04440
Variance	$1.97 \mathrm{E}-03$
Skewness	0.771577
Kurtosis	0.560493
N	30
Minimum	3.55400
1st Quartile	3.57650
Median	3.60800
3rd Quartile	3.64325
Maximum	3.73400

95\% Confidence Interval for Mu
3.595623 .62878

95\% Confidence Interval for Sigma
$0.03536 \quad 0.05969$
95\% Confidence Interval for Median
$3.58269 \quad 3.63263$
By observation, we can see that the data is skewed left (sample median is located below the sample mean) \& the P -value is 0.257 so we cannot reject normality.

Figure: Graphical Summary for tester 1 test sample 2 in strain

Descriptive Statistics

Variable: Tester 1B
Anderson-Darling Normality Test

A-Squared:	0.288
P-Value:	0.593
Mean	3.54127
StDev	0.04797
Variance	$2.30 \mathrm{E}-03$
Skewness	$-6.5 \mathrm{E}-02$
Kurtosis	0.884458
N	30
Minimum	3.42900
1st Quartile	3.51125
Median	3.54700
3rd Quartile	3.56600
Maximum	3.65800

95\% Confidence Interval for Mu 3.523353 .55918 95\% Confidence Interval for Sigma $0.03820 \quad 0.06449$
95\% Confidence Interval for Median
$3.52200 \quad 3.56177$

By observation, we can see that the data is skewed right (sample mean is located below the sample median). Also, the P-value is 0.593 so we cannot reject normality.

Figure: Graphical Summary for tester 2 test sample 2 in strain
Descriptive Statistics

95\% Confidence Interval for Mu

Variable: Tester 2B
Anderson-Darling Normality Test
A-Squared: 0.22
P-Value:

Mean	3.59650
StDev	0.03738
Variance	$1.40 \mathrm{E}-03$
Skewness	$1.92 \mathrm{E}-02$

Kurtosis $\quad-4.0 \mathrm{E}-02$
N
Minimum
3.50800
1st Quartile
3.56650
3.59300
$\begin{array}{ll}\text { 3rd Quartile } & 3.61950 \\ \text { Maximum } & 3.67000\end{array}$
Maximum $\quad 3.67000$
95\% Confidence Interval for Mu
$3.58254 \quad 3.61046$
95\% Confidence Interval for Sigma
$0.02977 \quad 0.05025$
95% Confidence Interval for Median
$3.58423 \quad 3.60854$

By observation, we can see that the data is skewed left (sample median is located below the sample mean). P-value is 0.815 so the data is normal.

Figure: Graphical Summary for tester 3 test sample 2 in strain

Descriptive Statistics

Variable: Tester 3B

Anderson-Darling	Normality Test
A-Squared:	0.309
P-Value:	0.537
Mean	3.57510
StDev	0.03414
Variance	$1.17 \mathrm{E}-03$
Skewness	$-1.4 \mathrm{E}-01$
Kurtosis	$8.96 \mathrm{E}-02$
N	30
Minimum	3.49800
1st Quartile	3.55200
Median	3.57600
3rd Quartile	3.59375
Maximum	3.63500

95\% Confidence Interval for Mu
$3.56235 \quad 3.58785$
95\% Confidence Interval for Sigma
$0.02719 \quad 0.04589$
95\% Confidence Interval for Median
$3.56314 \quad 3.58654$

By observation, we can see that the data is skewed right (sample mean is located below the sample median) \& P-value is 0.537 so the curve follows normality.

Figure: Graphical Summary for tester 4 test sample 2 in strain

Descriptive Statistics

Variable: Tester 4B

Anderson-Darling Normality Test	
A-Squared:	0.361
P-Value:	0.424
Mean	3.60723
StDev	0.04800
Variance	$2.30 \mathrm{E}-03$
Skewness	$-3.6 \mathrm{E}-01$
Kurtosis	0.717630
N	30
Minimum	3.48900
1st Quartile	3.58425
Median	3.60850
3rd Quartile	3.64200
Maximum	3.71000
95\% Confidence Interval for Mu	
3.58931	3.62516
95\% Confidence Interval for Sigma	
0.03823	0.06453
95\% Confidence Interval for Median	
3.59246	3.63103

By observation, we can see that the data is skewed right (sample mean is located below the sample median). Also, the P -value is 0.424 so we cannot reject normality.

Normality testing (Anderson Darling):

Figure: Normal Probability Plot for tester 1 test sample 1 in strain Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 2 test sample 1 in strain Normal Probability Plot

Average: 3.6343
StDev: 0.0332940
$\mathrm{N}: 30$

Anderson-Darling Normality Test A-Squared: 0.377 P-Value: 0.387

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 3 test sample 1 in strain

Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 4 test sample 1 in strain
Normal Probability Plot

Average: 3.6122
StDev: 0.0443998
$\mathrm{N}: 30$

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 1 test sample 2 in strain

Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 2 test sample 2 in strain
Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 3 test sample 2 in strain

Normal Probability Plot

Average: 3.5751
StDev: 0.0341360
$\mathrm{N}: 30$
Anderson-Darling Normality Test
A-Squared: 0.309
P-Value: 0.537

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 4 test sample 2 in strain Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

P-values and confidence interval of strain test on spool A \& B -

Tester on spool A	P- values	Confidence interval for mean
1	0.502	$3.53<\mathrm{Mu}<3.56$
2	0.387	$3.62<\mathrm{Mu}<3.64$
3	0.561	$3.63<\mathrm{Mu}<3.66$
4	0.257	$3.59<\mathrm{Mu}<3.62$
Tester on spool B		
1	0.593	$3.52<\mathrm{Mu}<3.56$
2	0.815	$3.58<\mathrm{Mu}<3.61$
3	0.537	$3.56<\mathrm{Mu}<3.59$
4	0.424	$3.58<\mathrm{Mu}<3.62$

Tenacity

Figure: Descriptive Statistics: Tenacity @ Break by Sample

Variable	N	Mean	Median	TrMean	StDev	SE Mean
TEN 1	120	7.2148	7.2420	7.2257	0.1633	0.0149
TEN 2	120	7.3177	7.3375	7.3191	0.1385	0.0126
Variable	Minimum	Maximum	Q1	Q3		
TEN 1	6.6210	7.5020	7.1660	7.3308		
TEN 2	7.0070	7.6090	7.2240	7.4230		

As what we can observe from this figure, we conclude that the Mean, Standard deviation and Median are really all very close. But the minimum value for sample 1 is slightly smaller than sample 2 .

We also provide all the data points in each sample to show the distribution.

Figure: Boxplots - Tenacity @ Break in Sample 1
Dotplot for Ten tot 1

Figure: Boxplots - Tenacity @ Break in Sample 1

Dotplot for Ten tot 2

Figure: Graphical Summary for sample 1 in tenacity @ break

Descriptive Statistics

Variable: TEN 1

Anderson-Darling Normality Test	
A-Squared:	3.156
P-Value:	0.000
Mean	7.21478
StDev	0.16328
Variance	$2.67 \mathrm{E}-02$
Skewness	-1.13485
Kurtosis	1.32145
N	120
Minimum	6.62100
1st Quartile	7.16600
Median	7.24200
3rd Quartile	7.33075
Maximum	7.50200
95\% Confidence Interval for Mu	
7.18527	7.24430
95\% Confidence Interval for Sigma	
0.14491	0.18703
95\% Confidence Interval for Median	
7.21799	7.26561

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& we observe that the data collected is not normal as the P -value is zero.

Figure: Graphical Summary for sample 2 in tenacity @ break

Descriptive Statistics

Variable: TEN 2

Anderson-Darling Normality Test	
A-Squared:	0.635
P-Value:	0.095
Mean	7.31766
StDev	0.13846
Variance	$1.92 \mathrm{E}-02$
Skewness	$-2.5 \mathrm{E}-01$
Kurtosis	$-5.2 \mathrm{E}-01$
N	120
Minimum	7.00700
1st Quartile	7.22400
Median	7.33750
3rd Quartile	7.42300
Maximum	7.60900
95\% Confidence Interval for Mu	
7.29263	7.34269
95\% Confidence Interval for Sigma	
0.12288	0.15860
95\% Confidence Interval for Median	
7.28818	7.36900

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median), interestingly the p -value is 0.095 so we say that the data is normal as $\mathrm{P}>\alpha$

Figure: Descriptive Statistics - Tenacity @ Break by Tester

Variable	N	Mean	Median	TrMean	StDev	SE Mean	Production Line
Tester 1	30	6.7528	6.8135	6.7719	0.1844	0.0337	A
Tester 1	30	6.8747	6.8475	6.8722	0.1323	0.0242	B
Tester 2	30	6.8113	6.8613	6.8237	0.1875	0.0342	A
Tester 2	30	6.9096	6.9520	6.9139	0.1558	0.0284	B
Tester 3	30	6.7940	6.8035	6.7985	0.1156	0.0211	A
Tester 3	30	6.9040	6.9170	6.9096	0.1097	0.0200	B
Tester 4	30	6.8077	6.8170	6.8122	0.1103	0.0201	A
Tester 4	30	6.8647	6.8853	6.8696	0.1201	0.0219	B
Variable	Minimum	Maximum		Q1	Production Line		
Tester 1	6.2325	6.9480	6.6954	6.8695	A		
Tester 1	6.6305	7.1475	6.7824	6.9841	B		
Tester 2	6.4000	7.0620	6.7253	6.9533	A		
Tester 2	6.5955	7.1625	6.7966	7.0083	B		
Tester 3	6.5330	6.9995	6.7080	6.8981	A		
Tester 3	6.6540	7.0690	6.8155	6.9979	B		
Tester 4	6.5095	7.0025	6.7628	6.8831	A		
Tester 4	6.6070	7.0570	6.7998	6.9533	B		

According to above figure, we can observe that for each tester testing in Tenacity @ Break, the mean and median are larger in sample 1 than sample 2 for each tester.

Figure: Graphical Summary for tester 1 test sample 1 in tenacity @ break

Descriptive Statistics

Variable: Tester 1 AA

Anderson-Darling Normality Test
A-Squared: 2.099
P-Value: $\quad 0.000$
Mean 6.75275
StDev 0.18439

Variance $\quad 3.40 \mathrm{E}-02$
Skewness -1.42038
Kurtosis 1.25193
N
Minimum 6.23250
1st Quartile $\quad 6.69538$
Median 6.81350
3rd Quartile $\quad 6.86950$
Maximum
6.94800
95% Confidence Interval for Mu
$6.68390 \quad 6.82160$
95\% Confidence Interval for Sigma
$0.14685 \quad 0.24788$
95\% Confidence Interval for Median
$6.78003 \quad 6.85731$

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) as P -value is zero the data is not normal.

Figure: Graphical Summary for tester 2 test sample 1 in tenacity @ break

Descriptive Statistics

Variable: Tester 2 AA

Anderson-Darling Normality Test	
A-Squared:	1.294
P-Value:	0.002
Mean	6.81127
StDev	0.18754
Variance	$3.52 \mathrm{E}-02$
Skewness	$-9.2 \mathrm{E}-01$
Kurtosis	$-2.4 \mathrm{E}-01$
N	30
Minimum	6.40000
1st Quartile	6.72525
Median	6.86125
3rd Quartile	6.95325
Maximum	7.06200

95\% Confidence Interval for Mu $6.74124 \quad 6.88129$ 95\% Confidence Interval for Sigma
$0.14936 \quad 0.25211$
95\% Confidence Interval for Median 6.794296 .92294

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& the data is not normal as $\mathrm{P}<\alpha$

Figure: Graphical Summary for tester 3 test sample 1 in tenacity @ break

Descriptive Statistics

Variable: Tester 3 AA

Anderson-Darling Normality Test
A-Squared: 0.314
P-Value: $\quad 0.527$

Mean	6.79402
StDev	0.11557

$\begin{array}{ll}\text { Mean } & 6.79402 \\ \text { StDev } & 0.11557\end{array}$
Variance $\quad 1.34 \mathrm{E}-02$
Skewness -4.3E-01
$\begin{array}{ll}\text { Kurtosis } & -4.4 \mathrm{E}-02 \\ \mathrm{~N}\end{array}$
N
Minimum 6.53300
1st Quartile 6.70800
Median 6.80350
3rd Quartile $\quad 6.89813$
Maximum 6.99950
95\% Confidence Interval for Mu
$6.75086 \quad 6.83717$
95\% Confidence Interval for Sigma
$0.09204 \quad 0.15537$
95\% Confidence Interval for Median
6.76750 6.83694

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& P-value is 0.527 so the data is normal.

Figure: Graphical Summary for tester 4 test sample 1 in tenacity @ break
Descriptive Statistics

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& P-value is 0.515 so data is normal.

Figure: Graphical Summary for tester1 test sample 2 in tenacity @ break

Descriptive Statistics

95\% Confidence Interval for Median

Variable: Tester 1 BB

Anderson-Darling Normality Test
A-Squared: 0.214
P-Value: $\quad 0.837$
Mean 6.87465
StDev 0.13232
Variance $\quad 1.75 \mathrm{E}-02$
Skewness 0.262836
Kurtosis $\quad-5.8 \mathrm{E}-01$
N
Minimum 6.63050
1st Quartile 6.78238
Median 6.84750
$\begin{array}{ll}\text { 3rd Quartile } & 6.98413 \\ & 7.14750\end{array}$
Maximum $\quad 7.14750$
95\% Confidence Interval for Mu
$6.82524 \quad 6.92406$
95\% Confidence Interval for Sigma
$0.10538 \quad 0.17789$
95\% Confidence Interval for Median
$6.80224 \quad 6.93181$

By observation, we can see that the data is skewed left obviously (sample median is located below the sample mean) \& P-value is 0.837 so the curve follows normality

Figure: Graphical Summary for tester2 test sample 2 in tenacity @ break

Descriptive Statistics

Variable: Tester 2 BB
Anderson-Darling Normality Test
A-Squared: 0.560
P-Value: $\quad 0.135$

Mean	6.90963
StDev	0.15578
Variance	$2.43 \mathrm{E}-02$
Skewness	$-4.7 \mathrm{E}-01$
Kurtosis	$-5.5 \mathrm{E}-01$
N	30
Minimum	6.59550
1st Quartile	6.79663
Median	6.95200
3rd Quartile	7.00825
Maximum	7.16250

95\% Confidence Interval for Mu $6.85147 \quad 6.96780$
95\% Confidence Interval for Sigma
0.124060 .20941

95\% Confidence Interval for Median
6.82877
6.98384

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& P-value is 0.135 so we cannot reject normality.

Figure: Graphical Summary for tester3 test sample 2 in tenacity @ break

Descriptive Statistics

Variable: Tester 3 BB

Anderson-Darling Normality Test
A-Squared: 0.350
P-Value:
0.450

Mean	6.90397
StDev	0.10970
Variance	$1.20 \mathrm{E}-02$
Skewness	$-4.8 \mathrm{E}-01$
Kurtosis	$-4.4 \mathrm{E}-01$
N	30
Minimum	6.65400
1st Quartile	6.81550
Median	6.91700
3rd Quartile	6.99788
Maximum	7.06900

95\% Confidence Interval for Mu $6.86300 \quad 6.94493$
95\% Confidence Interval for Sigma $0.08737 \quad 0.14747$
95\% Confidence Interval for Median 6.840796 .9723

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& P-value is 0.45 so we cannot reject normality.

Figure: Graphical Summary for tester4 test sample 2 in tenacity @ break

Descriptive Statistics

Variable: Tester 4 BB

Anderson-Darling Normality Test

A-Squared:	0.572
P-Value:	0.126
Mean	6.86475
StDev	0.12005
Variance	$1.44 \mathrm{E}-02$
Skewness	$-6.0 \mathrm{E}-01$
Kurtosis	$-4.8 \mathrm{E}-01$
N	30
Minimum	6.60700
1st Quartile	6.79975
Median	6.88525
3rd Quartile	6.95325
Maximum	7.05700

95\% Confidence Interval for Mu 6.819926 .90958

95\% Confidence Interval for Sigma $0.09561 \quad 0.16139$
95\% Confidence Interval for Median
6.829106 .93650

By observation, we can see that the data is skewed right obviously (sample mean is located below the sample median) \& P-value was 0.126 so we cannot reject normality.

Normality testing (Anderson Darling)

Figure: Normal Probability Plot for tester 1 test sample 1 in tenacity @ break

Normal Probability Plot


```
Average: 6.75275
StDev: 0.184394
N: 30
Anderson-Darling Normality Test \(\mathrm{N}: 30\)
A-Squared: 2.099
P-Value: 0.000
```

By the graphic, we can conclude that the data is not normal (because P -value $<$ 0.05), the reason might be tester error, sample defect or instrument problems.

Figure: Normal Probability Plot for tester 2 test sample 1 in tenacity @ break Normal Probability Plot

By the graphic, we can conclude that the data is not normal (because P -value $<$ 0.05), the reason might be tester error, sample defect or instrument problems.

Figure: Normal Probability Plot for tester 3 test sample 1 in tenacity @ break Normal Probability Plot

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 4 test sample 1 in tenacity @ break Normal Probability Plot

Anderson-Darling Normality Test
StDev. 0.110296
A-Squared: 0.321
$\mathrm{N}: 30$ P-Value: 0.515

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 1 test sample 2 in tenacity @ break

Normal Probability Plot

Average: 6.87465
Anderson-Darling Normality Test
StDev: 0.132324
A-Squared: 0.214
P-Value: 0.837
By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 2 test sample 2 in tenacity @ break
Normal Probability Plot

Average: 6.90963
StDev. 0.155776
$\mathrm{N}: 30$
A-Squared: 0.560
P-Value: 0.135

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 3 test sample 2 in tenacity @ break

Normal Probability Plot

Average: 6.90397
StDev: 0.109701
Anderson-Darling Normality Test $\mathrm{N}: 30$ A-Squared: 0.350
P-Value: 0.450

By the graphic, we can conclude that the data is normal (because P -value >0.05)

Figure: Normal Probability Plot for tester 4 test sample 2 in tenacity @ break Normal Probability Plot

Average: 6.86475
StDev: 0.120053
N: 30

Anderson-Darling Normality Test
A-Squared: 0.572
P-Value: 0.126

By the graphic, we can conclude that the data is normal (because P -value >0.05)

P-values and confidence interval of Tenacity test on spool A \& B -

Tester on spool A	P- values	Confidence interval for mean
1	0.000	$6.68<\mathrm{Mu}<6.82$
2	0.002	$6.74<\mathrm{Mu}<6.88$
3	0.527	$6.75<\mathrm{Mu}<6.84$
4	0.515	$6.77<\mathrm{Mu}<6.85$
Tester on spool B		
1	0.837	$6.83<\mathrm{Mu}<6.92$
2	0.135	$6.85<\mathrm{Mu}<6.97$
3	0.450	$6.86<\mathrm{Mu}<6.94$
4	0.126	$6.82<\mathrm{Mu}<6.91$

Time Series:

To prove that all the data are time independent. There are no time-factor involved in the test.
Figure: Time series plot in sample 1 for \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 1 tests in \%strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 1 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 1 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 1 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 2 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 2 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 2 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 2 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 3 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 3 tests in \% tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 3 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 3 tests in \% tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 4 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 1 for tester 4 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 4 tests in \% strain @ 3GPD

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

Figure: Time series plot in sample 2 for tester 4 tests in tenacity @ break

By the graphic, we can make the conclusion that because there is no pattern in this graphic; it means that all the data are time independent. Material tested is stable and properties should not change over time.

V. Hypothesis Testing:

By doing hypothesis test, we want to show that $\mu 1=\mu 2$ for both properties. We assumed that $\mathrm{Ho}: \mu 1=\mu 2, \mathrm{H} 1: \mu 1 \neq \mu 2$ and variances are assumed to be equal based on historical information.

\% Strain @ 3GPD

Paired T-Test and CI: 3GPD tot 1, 3GPD tot 2
Paired T for 3GPD tot 1 - 3GPD tot 2

	N	Mean	StDev	SE Mean
3GPD tot 1	120	3.61029	0.05457	0.00498
3GPD tot 2	120	3.58003	0.04885	0.00446
Difference	120	0.03027	0.06007	0.00548
95\% CI for mean difference:	$(0.01941,0.04113)$			
T-Test of mean difference $=0$	$($ vs not $=0):$ T-Value $=5.52$ P-Value $=0.000$			

As a result, because p -value $(0.0000)<\alpha$, so we have to reject null hypothesis. Therefore, the means of \% strain @ 3GPD for sample 1 and sample 2 are not equal.

Tenacity @ Break

Paired T-Test and CI: Ten tot 1, Ten tot 2

```
Paired T for Ten tot 1 - Ten tot 2
\begin{tabular}{lcccr} 
& N & Mean & StDev & SE Mean \\
Ten tot 1 & 120 & 6.7914 & 0.1537 & 0.0140 \\
Ten tot 2 & 120 & 6.8883 & 0.1303 & 0.0119 \\
Difference & 120 & -0.0968 & 0.2029 & 0.0185
\end{tabular}
95% CI for mean difference: (-0.1335, -0.0602)
T-Test of mean difference = 0 (vs not = 0) : T-Value = - 5. 23 P-Value = 0.000
```

As a result, because p -value $(0.0000)<\alpha$, so we have to reject null hypothesis. Therefore, the means of \% strain @ 3GPD for sample 1 and sample 2 are not equal.

VI. Correlation Analysis:

Tenacity is the measure of strength when an object is under tensile stress while strain is the measure of deformation. The relationship between them is inverse proportion or in order words a negative correlation should exist between them.

Sample 1:

Correlations: Strain-A, Tenacity-A

Pearson correlation of Strain-A and Tenacity-A $=0.115, \mathrm{P}$-Value $=0.213$

For this graph, we observe that the correlation coefficient $=0.115$ is insignificant since the p -value $>\alpha$. There is still a probability of a relationship existing between the two but it is not a linear one.

Sample 2:

Correlations: Strain-B, Tenacity-B

For this graph, we observe that the correlation coefficient $=-0.221$ with a P -value $=0.021$. This shows a weak negative correlation though we expected it to be stronger.

VII. Modeling: ANOVA and Regression

ANOVA TESTING

ANOVA testing was performed for each property, \% Strain @ 3 GPD and Tenacity @ Break, for each sample. The mean result for each tester was evaluated to determine if the mean results were the same. Each tester needs to be able to yield results consistent with the other tester before the project can move forward

Sample 1 "\%Strain @ 3GPD"

Testing for Sample 1, \% Strain @3GPD, shows there is a clear difference in the means between the testers. The p-value is zero and the Tukey's comparison shows differences between tester 1 vs. testers 2,3 \& 4 and between tester 3 vs tester 4.

One-way ANOVA: 3GPD 1 versus Tester

```
Analysis of Variance for 3GPD 1
\begin{tabular}{lrrrcc} 
Source & DF & SS & \multicolumn{1}{c}{ MS } & F & P \\
Tester & 3 & 0.17728 & 0.05909 & 38.70 & 0.000 \\
Error & 116 & 0.17710 & 0.0015 & & \\
Total & 119 & 0.35438 & & &
\end{tabular}
Individual 95\% CIs For Mean Based on Pooled StDev
```


1
 2
 3

$$
\begin{aligned}
2 & -0.11326 \\
& -0.06061
\end{aligned}
$$

$3-0.12626-0.03932$

$$
-0.07361 \quad 0.01332
$$

$$
\begin{array}{llll}
4 & -0.09116 & -0.00422 & 0.00878
\end{array}
$$

$$
\begin{array}{lll}
-0.03851 & 0.04842 & 0.06142
\end{array}
$$

Boxplot for sample 1 for "\%Strain @ 3GPD" shows that the confidence intervals do not overlap for the all the testers as indicated by the ANOVA.

Boxplots of 3GPD 1 by Tester

(means are indicated by solid circles)

Normality plot of residuals for sample 1 for "\%Strain @ 3GPD" confirms that the data is normally distributed.

Residual plot vs the order of the data for sample 1 for "\%Strain @ 3GPD" confirms that the data independent of time.

Sample 2-"\%Strain@3GPD"

Testing for Sample 2, \% Strain @3GPD, again shows there is a clear difference in the means between the testers. The p-value is zero and the Tukey's comparison shows differences between tester 1 vs. testers 2, 3 \& 4 and between tester 3 vs tester 4 .

One-way ANOVA: 3GPD 2 versus Tester

```
Analysis of Variance for 3GPD 2
\begin{tabular}{lrrccc} 
Source & DF & SS & MS & F & P \\
Tester & 3 & 0.07615 & 0.02538 & 14.16 & 0.000 \\
Error & 116 & 0.20786 & 0.00179 & & \\
Total & 119 & 0.28401 & & &
\end{tabular}
Individual 95\% CIs For Mean
Based on Pooled StDev
```


1

$$
\begin{aligned}
2 & -0.08375 \\
& -0.02671
\end{aligned}
$$

$$
3 \quad-0.06235 \quad-0.00712
$$

$$
-0.00531 \quad 0.04992
$$

$$
\begin{array}{llll}
4 & -0.09449 & -0.03925 & -0.06065
\end{array}
$$

$$
-0.03745 \quad 0.01779 \quad-0.00361
$$

Boxplot for sample 2 for "\%Strain @ 3GPD" shows that the confidence intervals do not overlap for the all the testers as indicated by the ANOVA.

Boxplots of 3GPD 2 by Tester

(means are indicated by solid circles)

Normality plot of residuals for sample 2 for "\%Strain @ 3GPD" confirms that the data is normally distributed.

Normal Probability Plot of the Residuals (response is 3GPD 2)

Residual plot vs the order of the data for sample 2 for " $\%$ Strain @ 3GPD" confirms that the data independent of time.

Summary - "\%Strain @ 3GPD"

For both samples, ANOVA shows a difference between testers. This difference is contributing to the difference that was seen between samples and led to the rejection of the means being equal.

Sample 1-"Tenacity @ Break"

Testing for Sample 1, Tenacity @ Break, shows there is no difference in the means between the testers. The p-value is 0.497 , which is greater than $\alpha=0.05$, for 95% confidence interval. Tukey's comparison shows agreement, each interval crosses zero.

One-way ANOVA: TEN 1 versus Tester

```
Analysis of Variance for TEN 1
\begin{tabular}{lrrccc} 
Source & DF & SS & MS & F & P \\
Tester & 3 & 0.0731 & 0.0244 & 0.91 & 0.437 \\
Error & 116 & 3.0995 & 0.0267 & & \\
Total & 119 & 3.1726 & & &
\end{tabular}
Individual 95\% CIs For Mean
Based on Pooled StDev
\begin{tabular}{llrl} 
Level & N & Mean & StDev \\
1 & 30 & 7.1737 & 0.1959
\end{tabular}
```

1
2
3

2

$$
\begin{array}{r}
-0.1723 \\
0.0480
\end{array}
$$

3

-0.1540	-0.0918
0.0663	0.1285

4

$$
\begin{array}{ccc}
-0.1685 & -0.1063 & -0.1246 \\
0.0518 & 0.1140 & 0.0956
\end{array}
$$

Boxplot for sample 1 for "Tenacity @ Break" shows that the confidence intervals do overlap for the all the testers as indicated by the ANOVA. You could easily draw one straight line through all the boxes.

Boxplots of TEN 1 by Tester

(means are indicated by solid circles)

Normality plot of residuals for sample 1 for "Tenacity @ Break" confirms that the data is normally distributed.

Normal Probability Plot of the Residuals
(response is TEN 1)

Sample 2-"Tenacity @ Break"

Testing for Sample 2, Tenacity @ Break, shows there is no difference in the means between the testers. The p-value is 0.471 , which is greater than $\square=0.05$, for 95% confidence interval. Tukey's comparison shows agreement, each interval crosses zero.

One-way ANOVA: TEN 2 versus Tester

Analysis of Variance for TEN 2

| Source | DF | SS | | MS | | F |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | P

Individual 95\% CIs For Mean
Based on Pooled StDev

Level	N	Mean	StDev	----------+------------------+------		
1	30	7.3032	0.1406	(-----------*------------		
2	30	7.3404	0.1655	(----------*------------		
3	30	7.3344	0.1165	(-----------*-----------)		
4	30	7.2927	0.1275	--*		
Pooled		0.1387		7.280	7.320	7.360

Tukey's pairwise comparisons
Family error rate $=0.0500$
Individual error rate $=0.0103$
Critical value $=3.69$
Intervals for (column level mean) - (row level mean)

	1	2	3
2	-0.1306		
	0.0563		
3	-0.1246	-0.0875	
	0.0623	0.0995	
4	-0.0830	-0.0458	-0.0518
	0.1040	0.1411	0.1351

Boxplot for sample 1 for "Tenacity @ Break" shows that the confidence intervals do overlap for the all the testers as indicated by the ANOVA. You could easily draw one straight line through all the boxes.

Boxplots of TEN 2 by Tester

(means are indicated by solid circles)

Normality plot of residuals for sample 1 for "Tenacity @ Break" confirms that the data is normally distributed.

Normal Probability Plot of the Residuals
(response is TEN 2)

Summary - "Tenacity @ Break"

For both samples, ANOVA shows no differences between testers. Hypothesis testing showed a difference between samples 1 and 2 with respect to this property, but all the tester show consistency

Tester 1 -Sample 1 "\%Strain @ 3GPD"

Tester 1 consistently had results that were different than all the other testers for both samples for this property. ANOVA of only tester 1 shows there is a difference in means within the three testing events for samples 1 and 2

For sample 1, testing event \#2 shares values with the other 2 testing events, and the Tukey's analysis shows agreement. Dot plots of this data confirm the differences and the normality plot of the residuals does not show very good normality with some points high and low, but the plot is not scattered.

One-way ANOVA: 3GPD 1 versus Event

Analysis of Variance for 3GPD 1

Source	DF	SS	MS		
Event	2	0.00891	0.00445	3.98	0.031
Error	27	0.03020	0.00112		
Total	29	0.03911			

Individual 95\% CIs For Mean Based on Pooled StDev

Tukey's pairwise comparisons
Family error rate $=0.0500$
Individual error rate $=0.0196$
Critical value $=3.51$
Intervals for (column level mean) - (row level mean)

1
2
$2-0.05902$
0.01522
$3 \quad-0.07932 \quad-0.05742$
$-0.00508 \quad 0.01682$

Normal Probability Plot of the Residuals

(response is 3GPD 1)

Dotplots of 3GPD 1 by Event
(group means are indicated by lines)

Tester 1 - Sample 2 "\%Strain @ 3GPD"

For sample 2, testing event \#1 is different from the other 2 events; this is confirmed through the Tukey's comparison. Dot plots of this data confirm the differences and the normality plot of the residuals does not show very good normality with some points high and low, but the plot is not scattered.

Removal of testing event \#1 may show that the means would be the same for both samples for tester 1.

One-way ANOVA: 3GPD 2 versus Event

Analysis of Variance for 3GPD 2

Source	DF	SS		MS	F	P
Event	2	0.02505	0.01253	8.12	0.002	
Error	27	0.04168	0.00154			
Total	29	0.06673				

Individual 95\% CIs For Mean
Based on Pooled StDev

Tukey's pairwise comparisons
Family error rate $=0.0500$
Individual error rate $=0.0196$
Critical value $=3.51$
Intervals for (column level mean) - (row level mean)

3	-0.10461	-0.04301
	-0.01739	0.04421

Summary - Tester 1

While some error may be attributed exclusively to tester \#1, it may be that the initial event for tester \#1 is creating most of the error.

Hypothesis Testing Confirmation

ANOVA analysis was performed for each property to compare sample 1 to sample 2. The results confirm the hypothesis test results and the determination that the means were different for both properties.

One-way ANOVA: 3GPD 1, 3GPD 2

Analysis of Variance

Source	DF	SS		MS	F	P
Factor	1	0.05496	0.05496	20.49	0.000	
Error	238	0.63839	0.00268			
Total	239	0.69335				

Based on Pooled StDev

One-way ANOVA: TEN 1, TEN 2

Analysis of Variance

| Source | DF | SS | | MS | |
| :--- | ---: | ---: | ---: | ---: | :--- | F | P |
| :--- |
| Factor |

alal CIs For Mean
Based on Pooled StDev

Regression Analysis:

To continue in the analysis of the data, a regression analysis must be performed. Initially a linear regression equation will be applied to the pooled experimental strength data. To determine the validity of the regression, residual analysis of the data will also be performed to validate or reject the regression equation and verify the assumed normality of the residuals.

\% Strain @ 3GPD:

- Regression Analysis: Tester 1 A versus Tester 2 A, Tester 3 A, ...
- The regression equation is
- Tester $1 \mathrm{~A}=1.63+0.265$ Tester $2 \mathrm{~A}+0.003$ Tester $3 \mathrm{~A}+0.260$ Tester 4 A
- Predictor Coef SE Coef T P
$\begin{array}{lllll}\text { - } & \text { Constant } & 1.6337 & 0.7694 & 2.12\end{array}$
$\begin{array}{lllll}\text { - } & \begin{array}{lll}\text { Tester } 2 & 0.2653 & 0.2758\end{array} 0.96 & 0.345\end{array}$
$\begin{array}{lllll}\text { - } & \text { Tester } 3 & 0.0026 & 0.2218 & 0.01\end{array}$
$\begin{array}{lllll}\text { - } & \begin{array}{lll}\text { Tester } 4 & 0.2601 & 0.1535\end{array} & 1.69 & 0.102\end{array}$
- $\mathrm{S}=0.03452 \quad \mathrm{R}-\mathrm{Sq}=20.8 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=11.6 \%$
- Analysis of Variance

| - | Source | DF | SS | MS | F |
| :--- | ---: | :---: | :---: | :---: | ---: | P

- Source DF Seq SS
- Tester 210.004665
- $\begin{array}{ccc}\text { Tester } 3 & 1 & 0.000039\end{array}$
- $\begin{array}{ccc}\text { Tester } 4 & 1 & 0.003422\end{array}$
-
- Unusual Observations

-	Obs	Tester 2	Tester 1	Fit	SE Fit	Residual	St Resid
-	20	3.66	3.48000	3.54727	0.01332	-0.06727	-2.11 R
-	28	3.64	3.47900	3.54945	0.01166	-0.07045	-2.17 R

- R denotes an observation with a large standardized residual

Tenacity @ Break:

- Regression Analysis: Tester 1 B versus Tester 2 B, Tester 3 B, ...
- The regression equation is
- Tester $1 \mathrm{~B}=2.55-0.136$ Tester $2 \mathrm{~B}+0.379$ Tester $3 \mathrm{~B}+0.033$ Tester 4 B
- Predictor
- Constant 2.555

SE Coef	T	P

$\begin{array}{lllll}\text { - } & \text { Tester } 2 & -0.1358 & 0.2420 & -0.56\end{array} 0.580$
$\begin{array}{lllll}\text { - } & \begin{array}{llll}\text { Tester } 3 & 0.3791 & 0.2715 & 1.40\end{array} 0.174\end{array}$
$\begin{array}{lllll}\text { - } & \begin{array}{llll}\text { Tester } 4 & 0.0331 & 0.1931 & 0.17\end{array} 0.865\end{array}$

- $\quad \mathrm{S}=0.04813$
$\mathrm{R}-\mathrm{Sq}=9.7 \%$
$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=0.0 \%$
- Analysis of Variance

- Source	DF	SS	MS	F	P
-	Regression	3	0.006496	0.002165	0.93
-	Residual Error	26	0.060234	0.002317	
-	Total	29	0.066730		

- Source DF Seq SS
- Tester 210.001363
- Tester $3 \quad 1 \quad 0.005066$
- $\begin{array}{lll}\text { Tester } 4 & 1 & 0.000068\end{array}$
- Unusual Observations

-	Obs	Tester 2	Tester 1	Fit	SE Fit	Residual	St Resid
-	10	3.55	3.42900	3.53121	0.01893	-0.10221	-2.31 R
-	11	3.51	3.65800	3.57473	0.02760	0.08327	2.11 R

- R denotes an observation with a large standardized residual

The results show low regression coefficients, low R-sq values and high p-values for both the samples, we can conclude that there is a little or in fact no regression between the testers. Hence, the testers are not biased with each other and work independently.

VIII. Conclusions:

The mean result for "\%Strain @ 3 GPD" for samples 1 and 2 have a statistical differences. The values only differ by 0.03 units; 3.58 vs. 3.61 , but that amount of error is significant enough to cause quality issues for the customer. It is possible that the samples are more alike than the testing will allow us to show. The statistical differences between the mean values may be primarily caused by the error that is introduced by the tester.

The test method has been designed to reduce tester error, but the tester must interact with the sample during the test. Each testers interaction will add a level of error to the measurement. Additionally, the test being performed is a destructive test - each portion of filament that is tested is destroyed and only tested once. Another portion of the larger sample would be used for each ensuing test. In this case, we assume that all portion are identical as long as they come from the same sample. This may also contribute to the difference that was seen.
It is possible to improve the test method and achieve the desired result - to mix lots from different production lines, but this should not be done at this time for this product.

Recommendation

The experiment should be repeated using additionally filament from the same samples previously tested. Each tester should be re-trained to perform the desired testing and the engineer should verify the test method being used and the technique of each tester. Additionally, the samples should be guarded more closely to ensure that the tester is selecting the correct sample each time and is not interchanging sample 1 results with sample 2 results. Using this verification and re-training, we should be able to show that a statistical difference between samples 1 and 2 does not exist.

